当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A modelling based study on the integration of 10 MWth indirect torrefied biomass gasification, methanol and power production
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2020-03-20 , DOI: 10.1016/j.biombioe.2020.105529
Mara Del Grosso , Balaji Sridharan , Christos Tsekos , Sikke Klein , Wiebren de Jong

This work is focused on the process system modelling of an indirectly heated gasifier (10 MWth) using torrefied wood as feedstock and its integration with methanol and power production using Aspen Plus®. The modelling of the gasification process along with the obtained reaction kinetics were validated with experimental data found in literature. Different processing steps such as gasification, gas cleaning and upgrading, methanol synthesis and energy conversion, were modelled and their performance was optimized through a series of sensitivity studies. The results obtained were then used to investigate the effect of different technologies and the variation of operational parameters on the overall process performance. Three cases were examined: “syngas production” (case 1), “methanol production” (case 2), and “power production” (IGCC) (case 3). Case 1 and case 2 were simulated using sand and dolomite as bed materials respectively, in order to study the incorporation of Absorption Enhanced Reforming (AER) on the syngas and methanol production efficiency. For case 3 the simulation was performed for two different configurations: a conventional Integrated Gasification Combined Cycle (IGCC) and an innovative Inverted Brayton Cycle (IBC) turbine system. Dolomite was used as the bed material for both configurations. For case 1, an increase of 5% in hydrogen yield in the product gas when AER is applied was observed. For case 2, higer values of Cold Gas Efficiency and Net Efficiency (34% and 60% instead of 33% and 55%, respectively) and a slightly lower value of Carbon Conversion (96% instead of 100%) were obtained when AER was employed. Gasification temperature was lowered by 110 °C in this scenario. For case 3, a lower value of Net Efficiency was obtained when IBC was considered (43% instead of 47%), while a value of 60% was obtained for methanol production with AE. Moreover, the results of case 3, showed that the latent heat in the hot syngas is best utilised when IBC is considered. The developed model accurately predicted the composition of the produced gas and the operational conditions of all the identified blocks within the methanol synthesis and power production processes. This way the use of this model as a generic tool to compare the utilization of different technologies on the performance of the overall process was validated.



中文翻译:

上的10兆瓦的整合建模为基础的研究间接烘焙的生物质气化,甲醇和电力生产

此工作的重点是间接加热的气化器(10 MW的处理系统建模使用的烘焙后的木材作为原料及其与使用AspenPLUS®甲醇和电力生产整合)。气化过程的建模以及获得的反应动力学已通过文献中的实验数据进行了验证。对不同的处理步骤进行了建模,例如气化,气体净化和提质,甲醇合成和能量转化,并通过一系列敏感性研究优化了它们的性能。然后将获得的结果用于研究不同技术的影响以及操作参数对整体过程性能的影响。审查了三个案例:“合成气生产”(案例1),“甲醇生产”(案例2)和“发电”(IGCC)(案例3)。案例1和案例2分别使用砂和白云石作为床层材料进行模拟,以研究吸收吸收重整(AER)对合成气和甲醇生产效率的影响。对于情况3,针对两种不同的配置进行了模拟:传统的整体气化联合循环(IGCC)和创新的布雷顿反循环(IBC)涡轮系统。白云石被用作两种构造的床层材料。对于情况1,观察到当应用AER时,产品气中氢气产率提高了5%。对于案例2,当AER为时,可获得较高的冷气效率和净效率值(分别为34%和60%,而不是33%和55%)和较低的碳转化率值(96%,而不是100%)。受雇。在这种情况下,气化温度降低了110°C。对于情况3,当考虑IBC时,获得的净效率值较低(43%而不是47%),而使用AE生产甲醇时获得的净效率值为60%。此外,案例3的结果表明,当考虑IBC时,热合成气中的潜热得到最佳利用。所开发的模型可以准确预测所产生的气体的成分以及甲醇合成和发电过程中所有已识别区块的运行条件。这样就验证了使用该模型作为通用工具来比较不同技术对整个过程性能的利用率。而使用AE生产甲醇可获得60%的值。此外,案例3的结果表明,当考虑IBC时,热合成气中的潜热得到最佳利用。所开发的模型可以准确预测所产生的气体的成分以及甲醇合成和发电过程中所有已识别区块的运行条件。这样就验证了使用该模型作为通用工具来比较不同技术对整个过程性能的利用率。而使用AE生产甲醇可获得60%的值。此外,案例3的结果表明,当考虑IBC时,热合成气中的潜热得到最佳利用。所开发的模型可以准确预测所产生的气体的成分以及甲醇合成和发电过程中所有已识别区块的运行条件。这样就验证了使用该模型作为通用工具来比较不同技术对整个过程性能的利用率。所开发的模型可以准确预测所产生的气体的成分以及甲醇合成和发电过程中所有已识别区块的运行条件。这样就验证了使用该模型作为通用工具来比较不同技术对整个过程性能的利用率。所开发的模型可以准确预测所产生的气体的成分以及甲醇合成和发电过程中所有已识别区块的运行条件。这样就验证了使用该模型作为通用工具来比较不同技术对整个过程性能的利用率。

更新日期:2020-03-20
down
wechat
bug