当前位置: X-MOL 学术Renew. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of transient flow in a shaft extension tubular pump unit during runaway process caused by power failure
Renewable Energy ( IF 8.7 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.renene.2020.03.057
Kan Kan , Yuan Zheng , Huixiang Chen , Daqing Zhou , Jing Dai , Maxime Binama , An Yu

Abstract To explore the load impact and instantaneous flow characteristics of a tubular pump under unconventional operating conditions, the runaway condition caused by the unit power failure are investigated. Unsteady three-dimensional (3D) numerical simulation and model test were executed on whole flow system of the pump, where a 3D VOF method was specifically adopted to simulate water surfaces of the upstream and downstream reservoirs. The results of numerical simulation in terms of system performance parameters and runaway speed presented a quite good agreement with the experimental data. During the transient process, both the rotational speed and flow rate of the pump unit were found to rapidly decrease with time until maximum runaway speed (1.51n0) was reached, where however, a time lag of 0.7s between the rotational speed and flow rate has been noticed. The explored increase of pressure pulsations is generally believed to have taken source from incurred water shock waves, where the main pulsation frequencies throughout the whole flow passage were the blade passing frequency (BPF) and its harmonics. Large flow vortical structures immerged within the rear guide vanes when the flow rate decreased to zero, while the same flow vortices appeared within the front guide vanes when the impeller rotational speed gradually fell to zero. This study’s results provide a meaningful reference about pump transient operations, leading to the prevention of associated structural vibrations and possible blade cracks, for safe operations of the pumping stations.

中文翻译:

轴伸管式泵机组停电失控过程中瞬态流动的数值模拟

摘要 为探究管式泵在非常规工况下的负荷冲击和瞬时流量特性,研究了机组停电引起的失控工况。对泵的整个流动系统进行了非定常三维(3D)数值模拟和模型试验,其中专门采用了3D VOF方法来模拟上下游水库的水面。数值模拟结果在系统性能参数和失控速度方面与实验数据吻合较好。在瞬态过程中,发现泵机组的转速和流量都随时间迅速下降,直到达到最大失控速度(1.51n0),但时滞为 0。注意到转速和流量之间有7s。所探索的压力脉动的增加通常被认为源于产生的水冲击波,其中贯穿整个流道的主要脉动频率是叶片通过频率 (BPF) 及其谐波。当流速降至零时,大流量涡结构浸入后导叶内,而当叶轮转速逐渐降至零时,前导叶内出现相同的流涡结构。这项研究的结果为泵瞬态运行提供了有意义的参考,从而防止了相关的结构振动和可能的叶片裂纹,从而保证了泵站的安全运行。所探索的压力脉动的增加通常被认为源于产生的水冲击波,其中贯穿整个流道的主要脉动频率是叶片通过频率 (BPF) 及其谐波。当流速降至零时,大流量涡结构浸入后导叶内,而当叶轮转速逐渐降至零时,前导叶内出现相同的流涡结构。这项研究的结果为泵瞬态运行提供了有意义的参考,从而防止了相关的结构振动和可能的叶片裂纹,从而保证了泵站的安全运行。所探索的压力脉动的增加通常被认为源于产生的水冲击波,其中贯穿整个流道的主要脉动频率是叶片通过频率 (BPF) 及其谐波。当流速降至零时,大流量涡结构浸入后导叶内,而当叶轮转速逐渐降至零时,前导叶内出现相同的流涡结构。这项研究的结果为泵瞬态运行提供了有意义的参考,从而防止了相关的结构振动和可能的叶片裂纹,从而保证了泵站的安全运行。其中贯穿整个流道的主要脉动频率是叶片通过频率(BPF)及其谐波。当流速降至零时,大流量涡结构浸入后导叶内,而当叶轮转速逐渐降至零时,前导叶内出现相同的流涡结构。这项研究的结果为泵瞬态运行提供了有意义的参考,从而防止了相关的结构振动和可能的叶片裂纹,从而保证了泵站的安全运行。其中贯穿整个流道的主要脉动频率是叶片通过频率(BPF)及其谐波。当流速降至零时,大流量涡结构浸入后导叶内,而当叶轮转速逐渐降至零时,前导叶内出现相同的流涡结构。这项研究的结果为泵瞬态运行提供了有意义的参考,从而防止了相关的结构振动和可能的叶片裂纹,从而保证了泵站的安全运行。
更新日期:2020-07-01
down
wechat
bug