当前位置: X-MOL 学术CrystEngComm › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlled engineering of nano-sized FeOOH@ZnO hetero-structures on reduced graphene oxide for lithium-ion storage and photo-Fenton reaction
CrystEngComm ( IF 2.6 ) Pub Date : 2020-03-19 , DOI: 10.1039/d0ce00171f
Binghui Xu 1, 2, 3, 4, 5 , Xin Dai 1, 2, 3, 4, 5 , Qingke Tan 1, 2, 3, 4, 5 , Yuan Wei 5, 6, 7, 8 , Gonggang Liu 5, 6, 7, 8 , Guanglei Wu 1, 2, 3, 4, 5
Affiliation  

In this work, a nano-sized goethite and zinc oxide hetero-structure (FeOOH@ZnO) dispersed on reduced graphene oxide (RGO) sheets was synthesized for the first time to construct a ternary composite (FeOOH@ZnO/RGO) via a stepped graphene oxide (GO) deoxygenation process. Ferrous ions (Fe2+) and metal Zn were employed as reducing agents, which were transformed into FeOOH and ZnO nanoparticles, respectively, to form a hetero-structure in the reaction. Particularly, the size of the nanoparticles could be controlled by limiting the growth kinetics in this work. As a result, a porous RGO architecture was constructed with well-dispersed hetero-structured nanoparticles consisting of encapsulated FeOOH and ZnO nanocrystals. The FeOOH@ZnO/RGO composite exhibited unique lithium-ion storage properties as an anode material for lithium-ion batteries. Also, compared with the binary FeOOH/RGO and ZnO/RGO composites, the ternary FeOOH@ZnO/RGO composite showed the best battery performance as an anode material for lithium-ion batteries and the best photo-Fenton degradation activity toward methylene blue (MB) degradation under simulated sunlight irradiation. The preparation route for the FeOOH@ZnO/RGO composite is straightforward, effective and has great potential to be scaled-up.

中文翻译:

还原型氧化石墨烯上纳米级FeOOH @ ZnO异质结构的可控工程,用于锂离子存储和光芬顿反应

在这项工作中,分散在还原的石墨烯氧化物(RGO)片材的纳米尺寸的针铁矿和氧化锌异质结构(的FeOOH @ ZnO)的被首次构造一个三元复合物(针铁矿@的ZnO / RGO)合成通过阶梯氧化石墨烯(GO)的脱氧过程。亚铁离子(Fe 2+)和金属Zn用作还原剂,分别转化为FeOOH和ZnO纳米颗粒,以在反应中形成异质结构。特别地,可以通过限制这项工作中的生长动力学来控制纳米颗粒的尺寸。结果,用分散良好的异质结构纳米颗粒构建了多孔RGO体系,该纳米颗粒由封装的FeOOH和ZnO纳米晶体组成。FeOOH @ ZnO / RGO复合材料作为锂离子电池的负极材料具有独特的锂离子存储性能。此外,与二元FeOOH / RGO和ZnO / RGO复合材料相比,FeOOH @ ZnO / RGO三元复合材料作为锂离子电池的负极材料表现出最佳的电池性能,并且在模拟阳光照射下对亚甲基蓝(MB)的降解具有最佳的光芬顿降解活性。FeOOH @ ZnO / RGO复合材料的制备路线简单,有效,并且具有扩大规模的潜力。
更新日期:2020-03-19
down
wechat
bug