当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp
Composites Part B: Engineering ( IF 12.7 ) Pub Date : 2020-03-17 , DOI: 10.1016/j.compositesb.2020.107976
Qigang Han , Shaoqian Shi , Zhanhang Liu , Zhiwu Han , Shichao Niu , Junqiu Zhang , Hanlin Qin , Yanbiao Sun , Jiahui Wang

The microstructure of the dactyl club of mantis shrimp is mainly divided into two regions, the impact region and the periodic region, which their synergy make the dactyl club have better impact resistance. It is provided innovative inspiration by two regions cooperation for the manufacture of high-energy absorption and impact-resistant fiber composite laminates. In this paper, a novel dactyl-inspired helical-fiber sinusoidal-structure laminate (HSL) was manufactured by unidirectional basalt fiber prepreg based on the impact region and the periodic region of dactyl club. The experimental results confirmed the accuracy of the finite element simulation results. The HSL was compared with unidirectional-fiber flat laminate (UFL), unidirectional-fiber sinusoidal-structure laminate (USL) and helical-fiber flat laminate (HFL) in low-velocity impact tests. As a result, the maximum impact peak force of the HSL was 6593.45 N, which increased of 65.29%, 108.05% and 13.00% compared with that of the UFL (3988.80 N), USL (3169.21 N) and HFL (5835.20 N). Although the UFL and USL had higher absorption energy, they all have different degrees of damage, and under the same conditions, the HSL had less damage than HFL, indicating that the HSL had better impact resistance. The excellent performance of the HSL could be attributed to the helical-sinusoidal structure. The helical arrangement of the fibers enhances the resistance of the HSL, makes crackle propagation difficult. The sinusoidal structure of the HSL enhanced its cushioning ability for impact forces. Therefore, the HSL is suitable for parts that require better impact resistance.



中文翻译:

新型玄武岩纤维复合材料层压板对螳螂虾半球棒螺旋-正弦仿生结构的抗冲击性能研究

螳螂虾的半乳糖棍的微观结构主要分为两个区域,即撞击区域和周期性区域,它们的协同作用使半乳糖棍具有更好的抗冲击性。两个地区合作为制造高能量吸收和抗冲击纤维复合材料层压板提供了创新的灵感。本文基于玄武岩球棒的撞击区域和周期区域,利用单向玄武岩纤维预浸料制备出了一种新颖的启发式启发式螺旋纤维正弦结构层压板(HSL)。实验结果证实了有限元仿真结果的准确性。在低速冲击试验中,将HSL与单向纤维扁平层压板(UFL),单向纤维正弦结构层压板(USL)和螺旋纤维扁平层压板(HFL)进行了比较。结果,HSL的最大冲击峰值力为6593.45 N,与UFL(3988.80 N),USL(3169.21 N)和HFL(5835.20 N)相比,增加了65.29%,108.05%和13.00%。尽管UFL和USL具有更高的吸收能,但是它们都具有不同程度的损坏,并且在相同条件下,HSL的损坏要少于HFL,这表明HSL具有更好的耐冲击性。HSL的出色性能可归因于螺旋正弦结构。纤维的螺旋排列增加了HSL的抵抗力,使裂纹难以传播。HSL的正弦结构增强了其对冲击力的缓冲能力。因此,HSL适用于需要更好抗冲击性的零件。与UFL(3988.80 N),USL(3169.21 N)和HFL(5835.20 N)相比分别增加了65.29%,108.05%和13.00%。尽管UFL和USL具有更高的吸收能,但是它们都具有不同程度的损坏,并且在相同条件下,HSL的损坏要少于HFL,这表明HSL具有更好的耐冲击性。HSL的出色性能可归因于螺旋正弦结构。纤维的螺旋排列增加了HSL的抵抗力,使裂纹难以传播。HSL的正弦结构增强了其对冲击力的缓冲能力。因此,HSL适用于需要更好抗冲击性的零件。与UFL(3988.80 N),USL(3169.21 N)和HFL(5835.20 N)相比分别增加了65.29%,108.05%和13.00%。尽管UFL和USL具有较高的吸收能,但它们都具有不同程度的损坏,并且在相同条件下,HSL的损坏要小于HFL,这表明HSL具有更好的耐冲击性。HSL的出色性能可归因于螺旋正弦结构。纤维的螺旋排列增加了HSL的抵抗力,使裂纹难以传播。HSL的正弦结构增强了其对冲击力的缓冲能力。因此,HSL适用于需要更好抗冲击性的零件。尽管UFL和USL具有较高的吸收能,但它们都具有不同程度的损坏,并且在相同条件下,HSL的损坏要小于HFL,这表明HSL具有更好的耐冲击性。HSL的出色性能可归因于螺旋正弦结构。纤维的螺旋排列增加了HSL的抵抗力,使裂纹难以传播。HSL的正弦结构增强了其对冲击力的缓冲能力。因此,HSL适用于需要更好抗冲击性的零件。尽管UFL和USL具有较高的吸收能,但它们都具有不同程度的损坏,并且在相同条件下,HSL的损坏要小于HFL,这表明HSL具有更好的耐冲击性。HSL的出色性能可归因于螺旋正弦结构。纤维的螺旋排列增加了HSL的抵抗力,使裂纹难以传播。HSL的正弦结构增强了其对冲击力的缓冲能力。因此,HSL适用于需要更好抗冲击性的零件。HSL的出色性能可归因于螺旋正弦结构。纤维的螺旋排列增加了HSL的抵抗力,使裂纹难以传播。HSL的正弦结构增强了其对冲击力的缓冲能力。因此,HSL适用于需要更好抗冲击性的零件。HSL的出色性能可归因于螺旋正弦结构。纤维的螺旋排列增加了HSL的抵抗力,使裂纹难以传播。HSL的正弦结构增强了其对冲击力的缓冲能力。因此,HSL适用于需要更好抗冲击性的零件。

更新日期:2020-03-19
down
wechat
bug