当前位置: X-MOL 学术J. Mater. Res. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Age hardening behaviors of spun 2219 aluminum alloy component
Journal of Materials Research and Technology ( IF 6.2 ) Pub Date : 2020-03-19 , DOI: 10.1016/j.jmrt.2020.02.098
Z.X. Li , M. Zhan , X.G. Fan , X.X. Wang , F. Ma

The role of spinning in the age hardening behaviors of 2219 aluminum alloy and the underlying mechanisms are very vital for aging process design. To this end, the Vickers hardness (HV) and microstructure features of spun 2219 Al-alloy component under various spinning thicknesses are investigated. The results show that the aging hardness curve under low thickness reduction is characteristic of dual-peak at artificial aging time of 2 h and 18 h, respectively, while the second peak diminishes with reduction and disappears as the reduction is larger than 10%. Furthermore, the hardness of the component decreases with the increase of the reduction after aging for 18 h, showing a completely contrary tendency compared with the hardness variation at the first aging hardness peak. The rapid precipitating of the fine second phases at the beginning of aging period leads to the sharp rise in hardness and thus the formation of the first hardness peak at 2 h aging time. For the spun component with reduction smaller than 10%, the formation of the second aging hardness peak is resulted from the transformation of θ'' phase to θ' phase. When the thickness reduction is larger than 10%, a large number of dislocation cells and sub-grain boundaries are produced by the shear spinning deformation. These dislocation cells and sub-grain boundaries lead to the formation of the coarse and non-uniformly distributed precipitates in aging process, which causes the monotonous decrease in hardness after aging for more than 2 h.



中文翻译:

2219铝合金零件的时效硬化行为

旋转在2219铝合金时效硬化行为中的作用及其潜在机理对于时效工艺设计至关重要。为此,研究了在不同纺丝厚度下纺制的2219铝合金部件的维氏硬度(HV)和微观结构特征。结果表明,低厚度减薄下的时效硬度曲线分别在人工时效2 h和18 h时具有双峰特征,而第二峰值随还原而减小,而当还原度大于10%时消失。此外,部件的硬度随老化18 h后的减少量增加而降低,与第一个时效硬度峰处的硬度变化相比,显示出完全相反的趋势。在时效开始时细小第二相的快速沉淀导致硬度急剧上升,因此在时效2小时时形成第一硬度峰。对于减少量小于10%的纺丝组分,第二时效硬度峰的形成是由于θ′相向θ′相的转变。当厚度减小率大于10%时,通过剪切纺丝变形产生大量的位错单元和亚晶界。这些位错单元和亚晶界导致在时效过程中形成粗大且不均匀分布的沉淀,这导致时效2小时以上后硬度单调下降。对于减少量小于10%的纺丝组分,第二时效硬度峰的形成是由于θ′相向θ′相的转变。当厚度减小率大于10%时,通过剪切纺丝变形产生大量的位错单元和亚晶界。这些位错单元和亚晶界导致在时效过程中形成粗大且不均匀分布的沉淀,这导致时效2小时以上后硬度单调下降。对于减少量小于10%的纺丝组分,第二时效硬度峰的形成是由于θ′相向θ′相的转变。当厚度减小率大于10%时,通过剪切纺丝变形产生大量的位错单元和亚晶界。这些位错单元和亚晶界导致在时效过程中形成粗大且不均匀分布的沉淀,这导致时效2小时以上后硬度单调下降。剪切纺丝变形产生大量的位错晶胞和亚晶界。这些位错单元和亚晶界导致在时效过程中形成粗大且不均匀分布的沉淀,这导致时效2小时以上后硬度单调下降。剪切纺丝变形产生大量的位错晶胞和亚晶界。这些位错单元和亚晶界导致在时效过程中形成粗大且不均匀分布的沉淀,这导致时效2小时以上后硬度单调下降。

更新日期:2020-03-19
down
wechat
bug