当前位置: X-MOL 学术Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical properties enhancement of hybrid nanocomposites thin films based on P3HT matrix and ZnO@SiO2 core-shell nanoparticles
Optical Materials ( IF 3.8 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.optmat.2020.109829
Aida Benchaabane , Mohsen Elain Hajlaoui , Nissrine Hnainia , Ahmad Al-Tabbakh , Andeas Zeinert , Habib Bouchriha

Abstract The synthesis of ZnO@SiO2 core-shell nanoparticles (NPs), their incorporation in the P3HT polymer matrix and the optoelectronic properties of the composite layer are reported. The ZnO@SiO2 NPs were synthesized by wet chemical reaction and incorporated in the polymer matrix at different weight ratios of 20, 40 and 60%. The photoluminescence spectra were used to investigate the optical properties of the samples as well as the transfer mechanism of the excitons. An exciton quenching rate constant γ of 3.10−11 cm3 s−1 is determined using the Stern–Volmer equation. The measurements of transmittance and reflectance were used to obtain the optoelectronic properties of the composite specimens. The possibility to control the refractive index (n) of the P3HT:ZnO@SiO2composite layer by changing the NPs concentration and the improvement of its semiconducting behavior are reported. Tauc and Wemple-Didomenico models are used to analyze the experimental data and obtain the energy gap of the P3HT:ZnO@SiO2nanocomposite thin films. The dielectric constant, frequency of plasma and the ratio of carrier density to the effective mass N m e ∗ were calculated by Drude – Lorentz model. The determination of these parameters and their dependence on the density of ZnO@SiO2NPs and the excitation wavelength are believed to aid our understanding of the behavior of the P3HT:ZnO@SiO2 nanocomposite layer.

中文翻译:

基于 P3HT 基体和 ZnO@SiO2 核壳纳米粒子的混合纳米复合薄膜的光学性能增强

摘要 报道了 ZnO@SiO2 核壳纳米粒子 (NPs) 的合成、它们在 P3HT 聚合物基质中的结合以及复合层的光电性能。ZnO@SiO2 NPs 是通过湿化学反应合成的,并以 20%、40% 和 60% 的不同重量比掺入聚合物基质中。光致发光光谱用于研究样品的光学性质以及激子的转移机制。激子淬灭速率常数 γ 为 3.10-11 cm3 s-1 是使用 Stern-Volmer 方程确定的。透射率和反射率的测量用于获得复合样品的光电特性。控制 P3HT 的折射率 (n) 的可能性:报道了通过改变 NPs 浓度和改善其半导体行为的 ZnO@SiO2 复合层。Tauc 和 Wemple-Didomenico 模型用于分析实验数据并获得 P3HT:ZnO@SiO2 纳米复合薄膜的能隙。介电常数、等离子体频率和载流子密度与有效质量的比值 N me* 由 Drude-Lorentz 模型计算。这些参数的确定及其对 ZnO@SiO2NPs 密度和激发波长的依赖被认为有助于我们理解 P3HT:ZnO@SiO2 纳米复合材料层的行为。等离子体频率和载流子密度与有效质量的比值 N me * 由 Drude-Lorentz 模型计算。这些参数的确定及其对 ZnO@SiO2NPs 密度和激发波长的依赖被认为有助于我们理解 P3HT:ZnO@SiO2 纳米复合材料层的行为。等离子体频率和载流子密度与有效质量的比值 N me * 由 Drude-Lorentz 模型计算。这些参数的确定及其对 ZnO@SiO2NPs 密度和激发波长的依赖被认为有助于我们理解 P3HT:ZnO@SiO2 纳米复合材料层的行为。
更新日期:2020-04-01
down
wechat
bug