当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unraveling and Regulating Self-Discharge Behavior of Ti3C2Tx MXene-Based Supercapacitors.
ACS Nano ( IF 15.8 ) Pub Date : 2020-03-18 , DOI: 10.1021/acsnano.0c01056
Zixing Wang 1 , Zhong Xu 1 , Haichao Huang 1 , Xiang Chu 1 , Yanting Xie 1 , Da Xiong 1 , Cheng Yan 1 , Haibo Zhao 1 , Haitao Zhang 1 , Weiqing Yang 1, 2
Affiliation  

Rich chemistry and surface functionalization provide MXenes enhanced electrochemical activity yet severely exacerbate their self-discharge behavior in supercapacitors. However, this self-discharge behavior and its related mechanism are still remaining issues. Herein, we propose a chemically interface-tailored regulation strategy to successfully unravel and efficiently alleviate the self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. As a result, Ti3C2Tx MXenes with fewer F elements (∼0.65 atom %) show a positive self-discharge rate decline of ∼20% in comparison with MXenes with higher F elements (∼8.09 atom %). Such decline of the F elements can highly increase tight-bonding ions corresponding to an individual self-discharge process, naturally resulting in a dramatic 50% increase of the transition potential (VT). Therefore, the mixed self-discharge rate from both tight-bonding (contain fewer F elements) and loose-bonding ions (contain more F elements) is accordingly lowered. Through chemically interface-tailored engineering, the significantly changed average oxidation state and local coordination information on MXene affected the interaction of ion counterparts, which was evidently revealed by X-ray absorption fine structures. Theoretically, this greatly improved self-discharge performance was proven to be from higher adsorption energy between the interface of the electrode and the electrolyte by density functional theory. Therefore, this chemically interface-tailored regulation strategy can guide the design of high-performance MXene-based supercapacitors with low self-discharge behavior and will promote its wider commercial applications.

中文翻译:

阐明和调节基于Ti3C2Tx MXene的超级电容器的自放电行为。

丰富的化学性质和表面官能化为MXene提供增强的电化学活性,但严重加剧了它们在超级电容器中的自放电行为。然而,这种自放电行为及其相关机制仍然是尚待解决的问题。本文中,我们提出了一种化学界面量身定制的调节策略,以成功阐明和有效缓解基于Ti3C2Tx MXene的超级电容器的自放电行为。结果,与具有较高F元素(约8.09%(原子))的MXenes相比,具有较少F元素(约0.65%(原子))的Ti3C2Tx MXenes表现出正的自放电率下降,约为20%。F元素的这种下降会大大增加对应于单个自放电过程的紧密结合离子,自然会导致跃迁电势(VT)急剧增加50%。因此,因此,紧密键合(包含较少的F元素)和松散键合离子(包含更多的F元素)的混合自放电率相应降低。通过化学界面定制工程,MXene的平均氧化态和局部配位信息的显着变化影响了离子对应物的相互作用,这在X射线吸收精细结构中很明显。理论上,通过密度泛函理论证明,这种大大改善的自放电性能来自电极和电解质界面之间较高的吸附能。因此,这种化学界面定制的调节策略可以指导具有低自放电性能的高性能基于MXene的超级电容器的设计,并将促进其更广泛的商业应用。
更新日期:2020-03-18
down
wechat
bug