当前位置: X-MOL 学术Appl. Environ. Microb. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermophilic Degradation of Hemicellulose, a Critical Feedstock in the Production of Bioenergy and Other Value-Added Products
Applied and Environmental Microbiology ( IF 3.9 ) Pub Date : 2020-03-18
Cann, I., Pereira, G. V., Abdel-Hamid, A. M., Kim, H., Wefers, D., Kayang, B. B., Kanai, T., Sato, T., Bernardi, R. C., Atomi, H., Mackie, R. I.

Renewable fuels have gained importance as the world moves toward diversifying its energy portfolio. A critical step in the biomass-to-bioenergy initiative is deconstruction of plant cell wall polysaccharides to their unit sugars for subsequent fermentation to fuels. To acquire carbon and energy for their metabolic processes, diverse microorganisms have evolved genes encoding enzymes that depolymerize polysaccharides to their carbon/energy-rich building blocks. The microbial enzymes mostly target the energy present in cellulose, hemicellulose, and pectin, three major forms of energy storage in plants. In the effort to develop bioenergy as an alternative to fossil fuel, a common strategy is to harness microbial enzymes to hydrolyze cellulose to glucose for fermentation to fuels. However, the conversion of plant biomass to renewable fuels will require both cellulose and hemicellulose, the two largest components of the plant cell wall, as feedstock to improve economic feasibility. Here, we explore the enzymes and strategies evolved by two well-studied bacteria to depolymerize the hemicelluloses xylan/arabinoxylan and mannan. The sets of enzymes, in addition to their applications in biofuels and value-added chemical production, have utility in animal feed enzymes, a rapidly developing industry with potential to minimize adverse impacts of animal agriculture on the environment.



中文翻译:

半纤维素的高温降解,半纤维素是生物能源和其他增值产品生产中的关键原料

随着世界朝着多样化能源组合的方向发展,可再生燃料变得越来越重要。生物质转化为生物能源计划的关键步骤是将植物细胞壁多糖解构成其单位糖,然后发酵为燃料。为了为其代谢过程获取碳和能量,各种各样的微生物已经进化出了编码酶的基因,这些酶将多糖解聚成碳/能量丰富的结构单元。微生物酶主要针对纤维素,半纤维素和果胶中存在的能量,这是植物中能量存储的三种主要形式。在努力开发生物能源替代化石燃料方面,一种常见的策略是利用微生物酶将纤维素水解为葡萄糖,然后发酵为燃料。然而,植物生物质向可再生燃料的转化将需要纤维素和半纤维素(植物细胞壁的两个最大成分)作为原料,以提高经济可行性。在这里,我们探索由两个经过充分研究的细菌进化而来的酶和策略,以使半纤维素木聚糖/阿拉伯木聚糖和甘露聚糖解聚。这套酶除了在生物燃料和增值化学产品中的应用外,还可以在动物饲料酶中使用。动物饲料酶是一个快速发展的行业,具有将动物农业对环境的不利影响降至最低的潜力。我们探索了由两个经过充分研究的细菌进化出的酶和策略,以使半纤维素木聚糖/阿拉伯木聚糖和甘露聚糖解聚。这套酶除了在生物燃料和增值化学产品中的应用外,还可以在动物饲料酶中使用。动物饲料酶是一个快速发展的行业,具有将动物农业对环境的不利影响降至最低的潜力。我们探索了由两个经过充分研究的细菌进化出的酶和策略,以使半纤维素木聚糖/阿拉伯木聚糖和甘露聚糖解聚。这套酶除了在生物燃料和增值化学产品中的应用外,还可以在动物饲料酶中使用。动物饲料酶是一个快速发展的行业,具有将动物农业对环境的不利影响降至最低的潜力。

更新日期:2020-03-19
down
wechat
bug