当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Demonstration of knock intensity mitigation through dielectric barrier discharge reformation in an RCEM
Combustion and Flame ( IF 5.8 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.combustflame.2020.02.020
Eiichi Takahashi , Yukihide Nagano , Toshiaki Kitagawa , Makihito Nishioka , Taizo Nakamura , Michio Nakano

Abstract A knock intensity mitigation effect resulting from the application of dielectric barrier discharge (DBD) was experimentally demonstrated. The DBD was utilized to reform fuel–air premixtures. A rapid compression and expansion machine (RCEM) was used for the demonstration experiment. A rectangular combustion channel was installed in the RCEM's cylinder to observe flame propagation and end-gas auto-ignition behavior. The effect of the DBD was investigated by installing a plug-shaped DBD reactor in the combustion chamber. Part of the fuel-air mixture was reformed by the DBD and diffused in the chamber, and the combustion behavior was observed by a color and a monochrome high-speed camera with several different interference filters. In ordinary end-gas auto-ignition, a hot flame rapidly appears throughout the end-gas region, and generates strong pressure oscillation; whereas, in the present study, when the DBD was applied, the magnitude of the pressure oscillation decreased and a blue flame was generated in the end gas before full end-gas auto-ignition. The onset time of the blue flame, and the interval between the onset and the hot flame's appearance, depended on the fuel and initial temperature. The effect was investigated in the case of a primary reference fuel, surrogate gasoline, and n-butane lean mixture; however, though the magnitude of the effect varied, the mitigation effect was demonstrated for every fuel-air mixture. The proposed method is therefore expected to mitigate knocking in internal combustion engines and contribute to greater thermal efficiency.

中文翻译:

通过 RCEM 中的电介质阻挡放电改造来减轻爆震强度的演示

摘要 实验证明了应用介质阻挡放电 (DBD) 所产生的爆震强度减轻效果。DBD 用于重整燃料-空气预混物。演示实验使用了快速压缩和膨胀机 (RCEM)。在 RCEM 的气缸中安装了一个矩形燃烧通道,以观察火焰传播和尾气自燃行为。通过在燃烧室中安装塞状 DBD 反应器来研究 DBD 的影响。部分燃油-空气混合物被 DBD 重整并在燃烧室中扩散,燃烧行为由彩色和单色高速摄像机观察,带有几种不同的干涉滤光片。在普通的尾气自燃中,整个尾气区域迅速出现热火焰,并产生强烈的压力振荡;而在本研究中,当应用 DBD 时,压力振荡的幅度减小,并且在完全尾气自燃之前尾气中会产生蓝色火焰。蓝色火焰的开始时间,以及从开始到热火焰出现的时间间隔,取决于燃料和初始温度。在主要参考燃料、替代汽油和正丁烷稀混合物的情况下研究了效果;然而,尽管影响的大小各不相同,但每种燃料空气混合物都证明了缓解效果。因此,所提出的方法有望减轻内燃机中的爆震并有助于提高热效率。压力振荡的幅度减小并且在完全尾气自燃之前尾气中产生蓝色火焰。蓝色火焰的开始时间,以及从开始到热火焰出现的时间间隔,取决于燃料和初始温度。在主要参考燃料、替代汽油和正丁烷稀混合物的情况下研究了效果;然而,尽管影响的大小各不相同,但每种燃料空气混合物都证明了缓解效果。因此,所提出的方法有望减轻内燃机中的爆震并有助于提高热效率。压力振荡的幅度减小并且在完全尾气自燃之前尾气中产生蓝色火焰。蓝色火焰的开始时间,以及从开始到热火焰出现的时间间隔,取决于燃料和初始温度。在主要参考燃料、替代汽油和正丁烷稀混合物的情况下研究了效果;然而,尽管影响的大小各不相同,但每种燃料空气混合物都证明了缓解效果。因此,所提出的方法有望减轻内燃机中的爆震并有助于提高热效率。开始和热火焰出现之间的间隔取决于燃料和初始温度。在主要参考燃料、替代汽油和正丁烷稀混合物的情况下研究了效果;然而,尽管影响的大小各不相同,但每种燃料-空气混合物都证明了缓解效果。因此,所提出的方法有望减轻内燃机中的爆震并有助于提高热效率。开始和热火焰出现之间的间隔取决于燃料和初始温度。在主要参考燃料、替代汽油和正丁烷稀混合物的情况下研究了效果;然而,尽管影响的大小各不相同,但每种燃料空气混合物都证明了缓解效果。因此,所提出的方法有望减轻内燃机中的爆震并有助于提高热效率。
更新日期:2020-06-01
down
wechat
bug