当前位置: X-MOL 学术Polym. Compos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Competition mechanism during oxidation of pyrolysis gases in nonequilibrium boundary layer on thermal protection performance of charring composites
Polymer Composites ( IF 5.2 ) Pub Date : 2020-03-17 , DOI: 10.1002/pc.25571
Weijie Li 1 , Jie Huang 1 , Zhongwei Zhang 2 , Haiming Huang 1 , Jun Liang 2
Affiliation  

The influence of gas‐phase reactions in chemical nonequilibrium boundary layer on the thermal protection performance of charring materials has been analyzed in this work. These reactions are exothermic and compose of oxidation between the multicomponent pyrolysis gases and the oxidative gas components in the chemical nonequilibrium hypersonic boundary layer. During the reactions, the consumption amount of oxidizing components competes with the amount of exothermicity of gas‐phase oxidation reactions. We built the physical and mathematical models for the coupling of thermal and ablative responses of material, hypersonic flow response, and chemical response in chemical nonequilibrium boundary layer. Moreover, a new surface energy balance equation is built for bridging the multifield coupling mathematical models. In addition, the exothermic heat produced from the oxidation reactions of multicomponent pyrolysis gases is taken into consideration. The numerical example for the fluid‐chemical‐thermal‐ablative coupled behavior for a charring ablator and its environment for an Apollo‐like reentry vehicle in chemical nonequilibrium is simulated by using our two‐way coupling computer codes. Numerical results indicate that the oxidation of multicomponent pyrolysis gases in chemical nonequilibrium boundary layer weakens the mass ablation of surface char. Although the pyrolysis gas in the nonequilibrium boundary layer oxidizes and releases heat, the weakening effect of oxygen consumption on the surface is much more significant, especially when the cold heat flux is smaller.

中文翻译:

非平衡边界层热解气体氧化过程中炭化复合材料热防护性能的竞争机理

在这项工作中,分析了化学非平衡边界层中气相反应对炭化材料热防护性能的影响。这些反应是放热反应,由化学非平衡高超声速边界层中的多组分热解气体和氧化性气体组分之间的氧化组成。在反应过程中,氧化组分的消耗量与气相氧化反应的放热量竞争。我们建立了物理和数学模型,用于耦合材料的热和烧蚀响应,超音速流响应和化学非平衡边界层中的化学响应。此外,建立了一个新的表面能平衡方程,以桥接多场耦合数学模型。此外,考虑了多组分热解气体氧化反应产生的放热。通过使用我们的双向耦合计算机代码,模拟了炭化烧蚀器的流体-化学-热-烧蚀耦合行为及其在化学非平衡中的阿波罗式折返车环境的数值示例。数值结果表明,化学非平衡边界层中多组分热解气体的氧化作用减弱了表面炭的质量烧蚀。尽管非平衡边界层中的热解气体会氧化并释放热量,但表面耗氧量的减弱作用更为显着,尤其是当冷热通量较小时。通过使用我们的双向耦合计算机代码,模拟了炭化烧蚀器的流体-化学-热-烧蚀耦合行为及其在化学非平衡中的阿波罗式折返车环境的数值示例。数值结果表明,化学非平衡边界层中多组分热解气体的氧化作用减弱了表面炭的质量烧蚀。尽管非平衡边界层中的热解气体会氧化并释放热量,但表面耗氧量的减弱作用更为显着,尤其是当冷热通量较小时。通过使用我们的双向耦合计算机代码,模拟了炭化烧蚀器的流体-化学-热-烧蚀耦合行为及其在化学非平衡中的阿波罗式折返车环境的数值示例。数值结果表明,化学非平衡边界层中多组分热解气体的氧化作用减弱了表面碳的质量烧蚀。尽管非平衡边界层中的热解气体会氧化并释放热量,但表面耗氧量的减弱作用更为显着,尤其是当冷热通量较小时。
更新日期:2020-03-17
down
wechat
bug