当前位置: X-MOL 学术J. Mater. Chem. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels.
Journal of Materials Chemistry B ( IF 7 ) Pub Date : 2020-05-14 , DOI: 10.1039/d0tb00424c
Fengcai Lin 1 , Zi Wang 1 , Jingsi Chen 2 , Beili Lu 1 , Lirong Tang 1 , Xuerong Chen 1 , Chensheng Lin 3 , Biao Huang 1 , Hongbo Zeng 2 , Yandan Chen 1
Affiliation  

Developing physical hydrogels with advanced mechanical performance and multi-functionalities as alterative materials for load-bearing soft tissues remains a great challenge. Biological protein-based materials generally exhibit superior strength and toughness owing to their hierarchical structures via hydrogen-bonding assembly. Inspired by natural biological protein materials, tannic acid (TA) is exploited as a molecular coupling bridge between cellulose nanocrystals (CNCs) and poly(vinyl alcohol) (PVA) chains for the fabrication of a bio-based advanced physical hydrogel via strong multiple H-bonds. When exposed to mechanical stress, the sacrificial H-bonds can dissipate energy effectively on the molecular scale via dynamic rupture and reformation, endowing these biomimetic hydrogels with remarkable toughness, ultrahigh strength, large elongation, and good self-recoverability, which are much superior to those of most hydrogen bond-based hydrogels. Moreover, the characteristics of TA endow these biomimetic hydrogels with versatile adhesiveness and good antibacterial properties. This work presents an innovative biomimetic strategy for robust biocompatible hydrogels with superior mechanical strength and functionalities, which holds great promise for applications in tissue engineering and biomedical fields.

中文翻译:

受生物启发的氢键交联策略,可增韧超强和多功能纳米复合水凝胶。

开发具有先进的机械性能和多功能性的物理水凝胶作为承载软组织的替代材料仍然是一个巨大的挑战。由于基于蛋白质的生物材料通过氢键组装的分层结构,因此通常显示出优异的强度和韧性。受天然生物蛋白质材料的启发,鞣酸(TA)被用作纤维素纳米晶体(CNC)和聚乙烯醇(PVA)链之间的分子偶联桥,用于通过强多重H来制造生物基高级物理水凝胶。 -债券。当受到机械应力时,牺牲性H键可以通过动态断裂和重整在分子尺度上有效地耗散能量,使这些仿生水凝胶具有显着的韧性,超高强度,大伸长率,以及良好的自我恢复能力,这比大多数基于氢键的水凝胶要好得多。而且,TA的特性使这些仿生水凝胶具有通用的粘合性和良好的抗菌性能。这项工作提出了一种具有强大机械强度和功能的坚固生物相容性水凝胶的创新仿生策略,在组织工程和生物医学领域的应用前景广阔。
更新日期:2020-03-16
down
wechat
bug