当前位置: X-MOL 学术Soft Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Template-based fabrication of spatially organized 3D bioactive constructs using magnetic low-concentration gelation methacrylate (GelMA) microfibers.
Soft Matter ( IF 2.9 ) Pub Date : 2020-04-29 , DOI: 10.1039/c9sm01945f
Tao Sun 1 , Yibing Yao 2 , Qing Shi 3 , Huaping Wang 4 , Paolo Dario 5 , Junzhong Sun 6 , Qiang Huang 4 , Toshio Fukuda 1
Affiliation  

Low concentrations of gelatin methacrylate (GelMA) microfibers are more favorable for cellular activity compared with high concentrations. However, applying low-concentration GelMA microfibers as building blocks for higher-order cellular assembly remains challenging owing to their poor mechanical properties. Herein, we report a new template-based method to solve this problem. GelMA microfibers (5%, w/v) containing magnetic nanoparticles were synthesized by a microfluidic spinning method. A 9 × 9 micropillar array surrounded by a magnetic substrate was constructed to form 8 × 8 microgaps arranged in a crisscross pattern as a magnetic template. In DMEM solution, magnetic attraction facilitated efficient arrangement of the microfibers according to the template with micron assembly accuracy, with a microgrid-like construct (microGC) generated after removing all micropillars. MicroGCs were shown to effectively support the activities of surface seeded or encapsulated cells and be flexibly constructed with various organized spatial patterns. Owing to the low mechanical property requirements of assembled microfibers and the easy-to-implement operation, the proposed method provides a versatile pathway for the assembly of various microfluidic spun microfibers. Furthermore, the resulting 3D microgrid-like cellular constructs with organized spatiotemporal composition offer a convenient platform for the study of tissue engineering.

中文翻译:

使用磁性低浓度凝胶化甲基丙烯酸酯(GelMA)超细纤维的基于模板的空间组织3D生物活性构建体制造。

与高浓度的明胶相比,低浓度的甲基丙烯酸明胶(GelMA)超细纤维对细胞活性更有利。然而,由于其低的机械性能,将低浓度的GelMA超细纤维用作高阶细胞组装的基础仍然具有挑战性。在这里,我们报告了一种新的基于模板的方法来解决此问题。通过微流体纺丝法合成了包含磁性纳米颗粒的GelMA超细纤维(5%,w / v)。构造一个由磁性基板围绕的9×9微柱阵列,以形成8×8个微缝隙,这些缝隙以十字形图案排列作为磁性模板。在DMEM解决方案中,磁引力有助于根据模板以微米的组装精度有效地排列微纤维,去除所有微柱后生成的微网格状结构(microGC)。MicroGC被证明可以有效地支持表面接种或封装的细胞的活动,并可以灵活地构建各种有组织的空间模式。由于组装的微纤维的低机械性能要求和易于实现的操作,所提出的方法为组装各种微流体纺制的微纤维提供了通用的途径。此外,具有组织的时空组成的所得3D微网格状细胞构建体为组织工程研究提供了方便的平台。由于组装的微纤维的低机械性能要求和易于实现的操作,所提出的方法为组装各种微流体纺制的微纤维提供了通用的途径。此外,具有组织的时空组成的所得3D微网格状细胞构建体为组织工程研究提供了方便的平台。由于组装的微纤维的低机械性能要求和易于实现的操作,所提出的方法为组装各种微流体纺制的微纤维提供了通用的途径。此外,具有组织的时空组成的所得3D微网格状细胞构建体为组织工程研究提供了方便的平台。
更新日期:2020-03-17
down
wechat
bug