当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward real-time monitoring of lithium metal growth and dendrite formation surveillance for safe lithium metal batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020/03/17 , DOI: 10.1039/d0ta01525c
Houchao Zhan 1, 2, 3, 4, 5 , Peichao Zou 1, 2, 3, 6, 7 , Wentao Yao 1, 2, 3 , Long Qian 1, 2, 3, 4, 5 , Kangwei Liu 1, 2, 3, 4, 5 , Shengyu Hu 1, 2, 3 , Haojie Zhu 1, 2, 3 , Yanbing He 1, 2, 3 , Feiyu Kang 1, 2, 3, 4, 5 , Cheng Yang 1, 2, 3
Affiliation  

Li metal has been regarded as one of the promising anode materials of the future due to its high specific capacity and low redox potential. To guarantee its safety and take full advantage of the capacity of Li metal batteries, it is important to understand the growth location, deposition uniformity, and degree of compactness of lithium metal deposition in the anode area during the operation of Li metal batteries. However, no research has been reported on the monitoring of lithium plating within the anode structure at the micro-level. Herein, we propose a new concept for the real-time monitoring of Li metal growth and the early surveillance of Li dendrites, which was demonstrated by simply adopting an alternating dielectric/conductive lamella structure. Within our alternated carbon nanofiber (CNF) scaffold and polyimide (PI) film host (CNF–PI host), the dielectric PI layer can block the direct electron transportation pathway between adjacent conductive CNF frameworks, thus guiding the Li metal plating in a more desirable stepwise “bottom-up” manner. The Li growth position could be detected in real time by monitoring the voltage between each conductive CNF layer and the counter electrode. And the Li deposition capacity inside each layer of CNF was further obtained, which reflected the stability of the Li deposition process. Meanwhile, due to the optimized Li deposition manner, a composite Li anode with this functional host shows excellent electrochemical performance. The full cell based on this functional Li metal anode with a LiNi0.8Co0.1Mn0.1O2 cathode shows excellent cycling stability under both a high current density of 3.6 mA cm−2 (1C rate) and areal capacity of 3.18 mA h cm−2.

中文翻译:

实现锂金属生长的实时监控和安全锂金属电池的枝晶形成监控

锂金属由于其高的比容量和低的氧化还原电位而被认为是未来有希望的阳极材料之一。为了保证其安全性并充分利用锂金属电池的容量,了解锂金属电池运行过程中阳极区域中锂金属沉积的生长位置,沉积均匀性和紧密度非常重要。然而,没有关于在微观水平上监测阳极结构内锂镀层的研究的报道。本文中,我们提出了一种实时监测锂金属生长和锂树枝状晶体的早期监测的新概念,这仅通过采用交替的介电/导电薄片结构即可证明。在我们的交替碳纳米纤维(CNF)支架和聚酰亚胺(PI)薄膜主体(CNF–PI主体)中,介电PI层可以阻挡相邻的导电CNF框架之间的直接电子传输路径,从而以更理想的逐步“自下而上”的方式引导Li金属镀层。通过监测每个导电CNF层和反电极之间的电压,可以实时检测Li的生长位置。并且进一步获得了CNF每一层内部的Li沉积能力,这反映了Li沉积过程的稳定性。同时,由于优化的Li沉积方式,具有该功能主体的复合Li阳极显示出优异的电化学性能。基于具有LiNi的功能性Li金属阳极的完整电池 因此,以更理想的逐步“自下而上”的方式引导锂金属电镀。通过监测每个导电CNF层和反电极之间的电压,可以实时检测Li的生长位置。并且进一步获得了CNF每一层内部的Li沉积能力,这反映了Li沉积过程的稳定性。同时,由于优化的Li沉积方式,具有该功能主体的复合Li阳极显示出优异的电化学性能。基于具有LiNi的功能性Li金属阳极的完整电池 因此,以更理想的逐步“自下而上”的方式引导锂金属电镀。通过监测每个导电CNF层和反电极之间的电压,可以实时检测Li的生长位置。并且进一步获得了CNF每一层内部的Li沉积能力,这反映了Li沉积过程的稳定性。同时,由于优化的Li沉积方式,具有该功能主体的复合Li阳极表现出优异的电化学性能。基于具有LiNi的功能性Li金属阳极的完整电池 这反映了锂沉积过程的稳定性。同时,由于优化的Li沉积方式,具有该功能主体的复合Li阳极显示出优异的电化学性能。基于具有LiNi的功能性Li金属阳极的完整电池 这反映了锂沉积过程的稳定性。同时,由于优化的Li沉积方式,具有该功能主体的复合Li阳极显示出优异的电化学性能。基于具有LiNi的功能性Li金属阳极的完整电池0.8 Co 0.1 Mn 0.1 O 2阴极在3.6 mA cm -2的高电流密度(1C速率)和3.18 mA h cm -2的面积容量下均显示出色的循环稳定性。
更新日期:2020-04-15
down
wechat
bug