当前位置: X-MOL 学术IEEE Trans. Power Electr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
How can a cutting-edge gallium nitride high-electron-mobility transistor encounter catastrophic failure within the acceptable temperature range
IEEE Transactions on Power Electronics ( IF 6.6 ) Pub Date : 2020-07-01 , DOI: 10.1109/tpel.2019.2956125
Sungyoung Song , Stig Munk-Nielsen , Christian Uhrenfeldt

Commercial gallium nitride (GaN) high-electron-mobility transistors used for power electronics applications show superior performance compared to silicon (Si)-based transistors. Combined with an increased radiation hardening properties, they are key candidates for high-performance power systems in a harsh environment, such as space. However, for this purpose, it is key to know the potential failure mechanisms (FMs) of the devices in depth. Here, we demonstrate how the repeated thermomechanical stress in a power cycling (PC) test within specified operating conditions destroys the GaN device. Based on leakage current localization analysis, we identify an FM with a yet unknown root cause. Utilizing emission microscopy, focused ion beam cutting, and scanning electron microscope techniques, it is revealed that multilayer cracks of a GaN die are triggered by a commercial leading package structure, which shows excellent capability under frequent thermomechanical stress. Through multiphysics simulations, it is shown that the structural factors that lie behind the strong performing component properties inside the package ultimately are directly related to the failure pattern. This article is accompanied by a video demonstrating dynamic thermal distribution difference between thermography measured in a practical experiment and a multiphysics simulation result during a single PC of a PC test. This article is accompanied by a supplementary figures file demonstrating test environment, preparation process of specimens, and reverse engineering results for the simulation model.

中文翻译:

尖端氮化镓高电子迁移率晶体管如何在可接受的温度范围内遭遇灾难性故障

与基于硅 (Si) 的晶体管相比,用于电力电子应用的商用氮化镓 (GaN) 高电子迁移率晶体管显示出卓越的性能。结合增强的抗辐射性能,它们是恶劣环境(例如太空)中高性能电源系统的关键候选者。然而,为此,深入了解设备的潜在故障机制 (FM) 是关键。在这里,我们演示了在指定操作条件下的功率循环 (PC) 测试中重复的热机械应力如何破坏 GaN 器件。基于漏电流定位分析,我们确定了一个具有未知根本原因的 FM。利用发射显微镜、聚焦离子束切割和扫描电子显微镜技术,结果表明,GaN芯片的多层裂纹是由商业领先的封装结构引发的,在频繁的热机械应力下显示出优异的性能。通过多物理场仿真,结果表明封装内部强大的组件特性背后的结构因素最终与故障模式直接相关。本文附有一段视频,演示了实际实验中测得的热成像与 PC 测试的单台 PC 中多物理场仿真结果之间的动态热分布差异。本文附有说明试验环境、试样制备过程和仿真模型逆向工程结果的补充图形文件。在频繁的热机械应力下显示出优异的性能。通过多物理场仿真,结果表明封装内部强大的组件特性背后的结构因素最终与故障模式直接相关。本文附有一段视频,演示了实际实验中测得的热成像与 PC 测试的单台 PC 中多物理场仿真结果之间的动态热分布差异。本文附有说明试验环境、试样制备过程和仿真模型逆向工程结果的补充图形文件。在频繁的热机械应力下显示出优异的性能。通过多物理场仿真,结果表明封装内部强大的组件特性背后的结构因素最终与故障模式直接相关。本文附有一段视频,演示了实际实验中测得的热成像与 PC 测试的单台 PC 中多物理场仿真结果之间的动态热分布差异。本文附有说明试验环境、试样制备过程和仿真模型逆向工程结果的补充图形文件。结果表明,封装内部性能强大的组件特性背后的结构因素最终与故障模式直接相关。本文附有一段视频,演示了实际实验中测得的热成像与 PC 测试的单台 PC 中多物理场仿真结果之间的动态热分布差异。本文附有说明试验环境、试样制备过程和仿真模型逆向工程结果的补充图形文件。结果表明,封装内部性能强大的组件特性背后的结构因素最终与故障模式直接相关。本文附有一段视频,演示了实际实验中测得的热成像与 PC 测试的单台 PC 中多物理场仿真结果之间的动态热分布差异。本文附有说明试验环境、试样制备过程和仿真模型逆向工程结果的补充图形文件。本文附有一段视频,演示了实际实验中测得的热成像与 PC 测试的单台 PC 中多物理场仿真结果之间的动态热分布差异。本文附有说明试验环境、试样制备过程和仿真模型逆向工程结果的补充图形文件。本文附有一段视频,演示了实际实验中测得的热成像与 PC 测试的单台 PC 中多物理场仿真结果之间的动态热分布差异。本文附有说明试验环境、试样制备过程和仿真模型逆向工程结果的补充图形文件。
更新日期:2020-07-01
down
wechat
bug