当前位置: X-MOL 学术IEEE Trans. Veh. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Comparative Study of S-V Model between 3.5 and 28 GHz in Indoor and Outdoor Scenarios
IEEE Transactions on Vehicular Technology ( IF 6.1 ) Pub Date : 2020-03-01 , DOI: 10.1109/tvt.2019.2963076
Tao Jiang , Jianhua Zhang , Mansoor Shafi , Lei Tian , Pan Tang

The 3.5 GHz and 28 GHz bands are both very important for the fifth-generation (5 G) wireless communication system. To model their propagation characteristics and study their channel properties, we conduct measurements at these two bands in indoor and outdoor scenarios. The measured bandwidths at 3.5 and 28 GHz are 100 and 400 MHz, respectively. To make a fair comparison, the measurement results at 28 GHz are divided into four groups with bandwidths from 100 to 400 MHz. This is also helpful to study the effect of bandwidth on the channel properties, especially numbers of clusters and their growth rate. We choose the Saleh-Valenzuela (S-V) model to analyze the wireless channel. Its cluster-based property is very suitable to describe the power delay profiles (PDPs) in our measurement. To maintain the time continuity of multipath components (MPCs) during the clustering, we propose a new heuristic cluster algorithm. Based on the clustering results, we obtain the channel parameters, i.e., the number of clusters, inter-cluster interval, intra-cluster root mean square (RMS) delay spread, cluster decay factor, and ray decay factor. From the comparative study, we can find that the rays suffer a larger attenuation at 28 GHz than at 3.5 GHz. Increasing bandwidth can increase the ray decay factor. But the effects of frequency on the cluster decay rate are different in indoor and outdoor scenarios. The cluster decay rate is smaller at 28 GHz in the indoor scenario.

中文翻译:

室内外3.5-28GHz SV模型对比研究

3.5 GHz 和 28 GHz 频段对于第五代 (5G) 无线通信系统都非常重要。为了模拟它们的传播特性并研究它们的信道特性,我们在室内和室外场景中在这两个频段上进行测量。在 3.5 GHz 和 28 GHz 下测得的带宽分别为 100 和 400 MHz。为了公平比较,28 GHz 的测量结果分为四组,带宽从 100 到 400 MHz。这也有助于研究带宽对信道特性的影响,尤其是集群数量及其增长率。我们选择 Saleh-Valenzuela (SV) 模型来分析无线信道。其基于集群的属性非常适合在我们的测量中描述功率延迟配置文件 (PDP)。为了在聚类过程中保持多路径分量 (MPC) 的时间连续性,我们提出了一种新的启发式聚类算法。基于聚类结果,我们获得信道参数,即簇数、簇间间隔、簇内均方根(RMS)延迟扩展、簇衰减因子和射线衰减因子。通过对比研究,我们可以发现射线在 28 GHz 处的衰减比在 3.5 GHz 处更大。增加带宽可以增加光线衰减因子。但是频率对集群衰减率的影响在室内和室外场景中是不同的。在室内场景中,集群衰减率在 28 GHz 时较小。簇间间隔、簇内均方根 (RMS) 延迟扩展、簇衰减因子和射线衰减因子。通过对比研究,我们可以发现射线在 28 GHz 处的衰减比在 3.5 GHz 处更大。增加带宽可以增加光线衰减因子。但是频率对集群衰减率的影响在室内和室外场景中是不同的。在室内场景中,集群衰减率在 28 GHz 时较小。簇间间隔、簇内均方根 (RMS) 延迟扩展、簇衰减因子和射线衰减因子。通过对比研究,我们可以发现射线在 28 GHz 处的衰减比在 3.5 GHz 处更大。增加带宽可以增加光线衰减因子。但是频率对集群衰减率的影响在室内和室外场景中是不同的。在室内场景中,集群衰减率在 28 GHz 时较小。
更新日期:2020-03-01
down
wechat
bug