当前位置: X-MOL 学术IEEE Trans. Veh. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An adaptive backstepping sliding mode controller to improve vehicle maneuverability and stability via torque vectoring control
IEEE Transactions on Vehicular Technology ( IF 6.1 ) Pub Date : 2020-03-01 , DOI: 10.1109/tvt.2019.2950219
Lin Zhang , Haitao Ding , Jianpeng Shi , Yanjun Huang , Hong Chen , Konghui Guo , Qin Li

To improve the maneuverability and stability of a vehicle and fully leverage the advantages of torque vectoring technology in vehicle dynamics control, a finite-time yaw rate and sideslip angle tracking controller is proposed by combining a second-order sliding mode (SOSM) controller with the backstepping method in this paper. However, existing research indicates that first-order sliding mode (FOSM) control suffers from the chattering problem, while the traditional SOSM controller requires knowing the bound of the uncertain term in advance to obtain the switching gain, which is difficult in practice. To address these problems, this paper proposes an adaptive second-order sliding mode (ASOSM) controller based on the backstepping method by adding the high-frequency switching term to the first derivative of the sliding mode variable, which implies that the actual control can be acquired after an integration process. The switching gain in the ASOSM controller is obtained by an adaptive algorithm without knowing any information of the uncertainty. The proposed algorithm is compared with FOSM and SOSM in different scenarios to demonstrate its applicability and robustness. Simulation results show that the bandwidth of the vehicle transient response can be improved by 21%. In addition, ASOSM and SOSM controllers are insensitive to vehicle mass and tire type, implying their robustness to such disturbances. Furthermore, ASOSM requires less control action because of the adaptive law when it performs similarly with SOSM and FOSM.

中文翻译:

一种通过扭矩矢量控制提高车辆机动性和稳定性的自适应反推滑模控制器

为提高车辆的机动性和稳定性,充分发挥扭矩矢量技术在车辆动力学控制中的优势,结合二阶滑模(SOSM)控制器和有限时间侧滑角跟踪控制器,提出了一种有限时间横摆率和侧滑角跟踪控制器。本文的反推方法。然而,现有研究表明,一阶滑模(FOSM)控制存在颤振问题,而传统的SOSM控制器需要提前知道不确定项的界以获得开关增益,这在实践中是困难的。针对这些问题,本文提出了一种基于反步法的自适应二阶滑模(ASOSM)控制器,通过在滑模变量的一阶导数中加入高频开关项,这意味着可以在整合过程后获得实际控制权。ASOSM 控制器中的开关增益是通过自适应算法获得的,无需了解任何不确定性信息。该算法在不同场景下与 FOSM 和 SOSM 进行了比较,以证明其适用性和鲁棒性。仿真结果表明,车辆瞬态响应的带宽可提高21%。此外,ASOSM 和 SOSM 控制器对车辆质量和轮胎类型不敏感,这意味着它们对此类干扰具有鲁棒性。此外,当 ASOSM 与 SOSM 和 FOSM 执行相似时,由于自适应律,ASOSM 需要较少的控制动作。ASOSM 控制器中的开关增益是通过自适应算法获得的,无需了解任何不确定性信息。该算法在不同场景下与 FOSM 和 SOSM 进行了比较,以证明其适用性和鲁棒性。仿真结果表明,车辆瞬态响应的带宽可提高21%。此外,ASOSM 和 SOSM 控制器对车辆质量和轮胎类型不敏感,这意味着它们对此类干扰具有鲁棒性。此外,当 ASOSM 与 SOSM 和 FOSM 执行相似时,由于自适应律,ASOSM 需要较少的控制动作。ASOSM 控制器中的开关增益是通过自适应算法获得的,无需了解任何不确定性信息。该算法在不同场景下与 FOSM 和 SOSM 进行了比较,以证明其适用性和鲁棒性。仿真结果表明,车辆瞬态响应的带宽可提高21%。此外,ASOSM 和 SOSM 控制器对车辆质量和轮胎类型不敏感,这意味着它们对此类干扰具有鲁棒性。此外,当 ASOSM 与 SOSM 和 FOSM 执行相似时,由于自适应律,ASOSM 需要较少的控制动作。仿真结果表明,车辆瞬态响应的带宽可提高21%。此外,ASOSM 和 SOSM 控制器对车辆质量和轮胎类型不敏感,这意味着它们对此类干扰具有鲁棒性。此外,当 ASOSM 与 SOSM 和 FOSM 执行相似时,由于自适应律,ASOSM 需要较少的控制动作。仿真结果表明,车辆瞬态响应的带宽可提高21%。此外,ASOSM 和 SOSM 控制器对车辆质量和轮胎类型不敏感,这意味着它们对此类干扰具有鲁棒性。此外,当 ASOSM 与 SOSM 和 FOSM 执行相似时,由于自适应律,ASOSM 需要较少的控制动作。
更新日期:2020-03-01
down
wechat
bug