当前位置: X-MOL 学术Inform. Sci. › 论文详情
A parallel computing method based on zeroing neural networks for time-varying complex-valued matrix Moore-Penrose inversion.
Information Sciences ( IF 5.524 ) Pub Date : 2020-03-18 , DOI: 10.1016/j.ins.2020.03.043
Xiuchun Xiao; Chengze Jiang; Huiyan Lu; Long Jin; Dazhao Liu; Haoen Huang; Yi Pan

This paper analyzes the existing zeroing neural network (ZNN) models from the perspective of control theory. It proposes an exclusive ZNN model for solving the dynamic complex-valued matrix Moore-Penrose inverse problem: the complex-valued zeroing neural network (CVZNN). Then, a method of constructing a special type of saturation-allowed activation function is defined, which relaxes the convex constraint on the activation function when constructing the ZNN model. The convergence of the CVZNN model activated by proposed saturation-allowed functions is analyzed. Besides, the robustness of the CVZNN model under different types of noise interference is investigated based on the perspective of the control theory. Finally, the effectiveness and superiority of the CVZNN model are illustrated by simulation experiments.
更新日期:2020-03-19

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug