当前位置: X-MOL 学术ACS Appl. Nano Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cerium Oxide Nanoparticles Stabilized within Metal–Organic Frameworks for the Degradation of Nerve Agents
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2020-03-16 , DOI: 10.1021/acsanm.0c00015
Mohamed H. Hassan 1 , Daniel Andreescu 1 , Silvana Andreescu 1
Affiliation  

Ceria nanoparticles (CeNPs) are promising enzyme mimetic catalysts due to their mixed oxidation states Ce3+/Ce4+ accompanied by the presence of oxygen vacancies. While their properties have been widely recognized, control of their activity, modulation of the Ce3+/Ce4+ ratio, dispersity, and accessibility of the active sites continue to be a challenge. Herein, we report a technique to synthesize highly active, ultrasmall CeNPs dispersed within a cerium-based metal–organic framework (Ce-MOF) via in situ etching of the parent NPs. Etching and stabilization of CeNPs within the MOF significantly enhanced their activity, prevented aggregation, and provided high accessibility of the active sites for catalytic reactions through the open channels of the MOF. The resulting material showed an enhancement in the degradation kinetics of the nerve agent simulant dimethyl p-nitrophenylphosphate (DMNP) as compared to the parent CeNPs or the Ce-MOF. These properties, characterized by a combination of optical imaging and spectroscopic techniques, are due to increased oxygen vacancies, an enhanced Ce3+ content at the surface, and the formation of ultrasmall CeNPs (∼1–2 nm) highly dispersed within the MOF matrix. This technique offers a strategy for controlling the surface chemistry of CeNPs, making them significantly more active for use in catalysis, sensing, and environmental remediation.

中文翻译:

在金属有机框架内稳定的氧化铈纳米粒子,可降解神经毒剂

二氧化铈纳米颗粒(CeNPs)是有前途的酶模拟催化剂,因为它们的混合氧化态Ce 3+ / Ce 4+伴随着氧空位的存在。尽管它们的性质已得到广泛认可,但可以控制其活性,调节Ce 3+ / Ce 4+活性部位的比例,分散性和可及性仍然是一个挑战。本文中,我们报道了一种通过对母体NP进行原位蚀刻来合成分散在铈基金属有机骨架(Ce-MOF)中的高活性,超小CeNPs的技术。CeNPs在MOF中的蚀刻和稳定化显着增强了它们的活性,防止了聚集,并通过MOF的开放通道为催化反应提供了高活性位点。所得材料显示出神经毒剂模拟物二甲基p的降解动力学增强。-硝基苯基磷酸酯(DMNP)与母体CeNPs或Ce-MOF相比。这些特性的特征在于结合了光学成像和光谱技术,这是由于氧空位增加,表面的Ce 3+含量增加以及在MOF基质中高度分散的超小CeNPs(〜1-2 nm)的形成所致。 。该技术提供了一种控制CeNPs表面化学的策略,使它们在催化,传感和环境修复中的活性大大提高。
更新日期:2020-03-16
down
wechat
bug