当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-crystal Winterbottom constructions of nanoparticle superlattices.
Nature Materials ( IF 37.2 ) Pub Date : 2020-03-16 , DOI: 10.1038/s41563-020-0643-6
Diana J Lewis 1, 2 , Leonardo Z Zornberg 1 , David J D Carter 2 , Robert J Macfarlane 1
Affiliation  

Colloidal nanoparticle assembly methods can serve as ideal models to explore the fundamentals of homogeneous crystallization phenomena, as interparticle interactions can be readily tuned to modify crystal nucleation and growth. However, heterogeneous crystallization at interfaces is often more challenging to control, as it requires that both interparticle and particle–surface interactions be manipulated simultaneously. Here, we demonstrate how programmable DNA hybridization enables the formation of single-crystal Winterbottom constructions of substrate-bound nanoparticle superlattices with defined sizes, shapes, orientations and degrees of anisotropy. Additionally, we show that some crystals exhibit deviations from their predicted Winterbottom structures due to an additional growth pathway that is not typically observed in atomic crystals, providing insight into the differences between this model system and other atomic or molecular crystals. By precisely tailoring both interparticle and particle–surface potentials, we therefore can use this model to both understand and rationally control the complex process of interfacial crystallization.



中文翻译:

纳米粒子超晶格的单晶Winterbottom结构。

胶体纳米颗粒组装方法可以用作探索均质结晶现象基础的理想模型,因为可以轻松调整颗粒间的相互作用以改变晶体的成核和生长。但是,界面处的异质结晶通常更难以控制,因为它要求同时处理颗粒间相互作用和颗粒-表面相互作用。在这里,我们演示了可编程的DNA杂交如何使具有约束尺寸,形状,方向和各向异性程度的底物结合纳米颗粒超晶格形成单晶Winterbottom结构。此外,我们发现某些晶体由于其在原子晶体中通常不会观察到的额外生长途径,而与预测的Winterbottom结构发生偏差,提供有关此模型系统与其他原子或分子晶体之间差异的见解。通过精确地调整粒子间和粒子表面电势,我们可以使用此模型来理解和合理控制界面结晶的复杂过程。

更新日期:2020-04-24
down
wechat
bug