当前位置: X-MOL 学术Biosens. Bioelectron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ fabrication of aloe-like Au–ZnO micro/nanoarrays for ultrasensitive biosensing of catechol
Biosensors and Bioelectronics ( IF 12.6 ) Pub Date : 2020-03-16 , DOI: 10.1016/j.bios.2020.112145
Tao Liu , Qiang Zhao , Ying Xie , Danfeng Jiang , Zhenyu Chu , Wanqin Jin

Currently, the large-scale and controllable fabrication of nanostructures on substrates remains a great challenge for further practical applications. In this work, a novel 3D aloe-like Au–ZnO nanocomposite was designed for in situ synthesis on an ITO substrate, achieving real-time detection of trace catechol (CC) in water. A seed-assisted hydrothermal approach was proposed to control the crystal distribution and growth direction to build a ZnO aloe-like architecture. To eliminate the natural weak conductivity of ZnO, Au nanoparticles were further deposited on all ZnO arrays to construct Au–ZnO micro/nanostructures. The synergetic effects derived from the aloe-like ZnO with a large specific area and Au nanoparticles with high conductivity resulted in both high electrocatalysis and fast electron transfer in enzymatic reactions. After laccase immobilization, the as-prepared biosensor exhibited specific recognition of catechol among other dihydroxybenzenes and phenol with an ultrahigh sensitivity of 131 μA mM−1, as well as an extremely wide linear range from 75 nM to 1100 μM and an ultralow detection limit of 25 nM. In addition, in the detection of real lake samples, this biosensor showed satisfactory anti-interference ability and provided reliable assay results.



中文翻译:

原位制备芦荟状Au-ZnO微/纳米阵列用于儿茶酚的超灵敏生物传感

当前,在基板上大规模且可控制地制造纳米结构对于进一步的实际应用仍然是巨大的挑战。在这项工作中,原位设计了一种新型的3D芦荟状Au–ZnO纳米复合材料在ITO基板上进行合成,可实时检测水中的痕量儿茶酚(CC)。提出了一种种子辅助水热法来控制晶体的分布和生长方向,以建立类似ZnO芦荟的结构。为了消除ZnO的天然弱电导率,将Au纳米颗粒进一步沉积在所有ZnO阵列上以构建Au-ZnO微米/纳米结构。源自比表面积大的芦荟状ZnO和具有高电导率的Au纳米粒子的协同效应导致酶反应中的高电催化和快速电子转移。固定漆酶后,所制备的生物传感器在其他二羟基苯和苯酚中表现出对儿茶酚的特异性识别,超高灵敏度为131μAmM -1以及从75 nM到1100μM的极宽线性范围和25 nM的超低检测限。此外,在检测真实湖泊样品时,该生物传感器显示出令人满意的抗干扰能力,并提供了可靠的测定结果。

更新日期:2020-03-16
down
wechat
bug