当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ti/Pt–Pd based nanocomposite: Effects of metal oxides on oxygen reduction reaction
ChemElectroChem ( IF 3.5 ) Pub Date : 2020-03-13 , DOI: 10.1002/celc.202000268
Guilherme V. Fortunato 1 , Eduardo S. F. Cardoso 1 , Bibiana K. Martini 1 , Gilberto Maia 1
Affiliation  

The present work reports the application of synthesized three‐dimensional Ti/Pt−Pd nanoparticles with highly rough surfaces supported on graphene nanoribbons (Ti/Pt−Pd/GNR nanocomposite) by a single one‐pot reaction, and applied in ORR. Unlike the effect of strong metal‐support interaction (SMSI), which favors electrons transfer from the metal support to the catalyst, the mechanism employed in this study favored the transfer of electrons from the catalyst to the metal support; in other words, the mechanism led to the oxidation of Pt and Pd. Pt was found to be more externally distributed at the rough surface of the metallic structures. Additionally, Ti, which presented oxide features, was found to be even more externally distributed at the surface of Pt−Pd on non‐electrochemically and electrochemically stabilized Ti/Pt‐Pd/GNR nanocomposite electrodes. Since all these metals have great amounts of different oxides (i.e. are highly oxidized), the oxides are found to be energetically responsible for the improvement in ORR electrocatalytic activity and stability of Ti/Pt‐Pd/GNR/GC electrodes in comparison with the ORR responses for PtC TKK/GC and Pt−Pd/GNR/GC modified electrodes. To Ti‐containing catalysts, the high activity is attributable to enhancing the intrinsic activity and the high selectivity to 4‐electron ORR is due to the fact that presence of Ti contributes to oxygen‐binding energy of these nanocomposites shifts toward more positive values (weakening oxygen bonding).

中文翻译:

Ti / Pt-Pd基纳米复合材料:金属氧化物对氧还原反应的影响

本工作报告了通过单一的一锅法反应在石墨烯纳米带(Ti / Pt-Pd / GNR纳米复合材料)上支撑的表面高度粗糙的合成三维Ti / Pt-Pd纳米颗粒的应用,并应用于ORR。与有利于电子从金属载体转移到催化剂的强金属-载体相互作用(SMSI)的影响不同,本研究采用的机理有利于电子从催化剂转移到金属载体。换句话说,该机制导致了Pt和Pd的氧化。发现Pt在金属结构的粗糙表面上更向外分布。此外,具有氧化物特征的Ti 发现在非电化学和电化学稳定的Ti / Pt-Pd / GNR纳米复合电极上,Pt-Pd的表面甚至分布在外部。由于所有这些金属都有大量不同的氧化物(即高度氧化),因此与ORR相比,发现这些氧化物在能量上有助于改善ORR电催化活性和Ti / Pt-Pd / GNR / GC电极的稳定性PtC TKK / GC和Pt-Pd / GNR / GC修饰电极的响应。对于含Ti的催化剂,高活性归因于其固有活性的增强,而对4电子ORR的高选择性归因于以下事实:Ti的存在有助于这些纳米复合材料的氧结合能向更正值移动(减弱氧键)。由于所有这些金属都有大量不同的氧化物(即高度氧化),因此与ORR相比,发现这些氧化物在能量上有助于改善ORR电催化活性和Ti / Pt-Pd / GNR / GC电极的稳定性PtC TKK / GC和Pt-Pd / GNR / GC修饰电极的响应。对于含Ti的催化剂,高活性归因于其固有活性的增强,而对4电子ORR的高选择性归因于以下事实:Ti的存在有助于这些纳米复合材料的氧结合能向更正值移动(减弱氧键)。由于所有这些金属都有大量不同的氧化物(即高度氧化),因此与ORR相比,发现这些氧化物在能量上有助于改善ORR电催化活性和Ti / Pt-Pd / GNR / GC电极的稳定性PtC TKK / GC和Pt-Pd / GNR / GC修饰电极的响应。对于含Ti的催化剂,高活性归因于其固有活性的增强,而对4电子ORR的高选择性归因于以下事实:Ti的存在有助于这些纳米复合材料的氧结合能向更正值移动(减弱氧键)。与PtC TKK / GC和Pt-Pd / GNR / GC修饰电极的ORR响应相比,发现该氧化物在能量上有助于提高Ti / Pt-Pd / GNR / GC电极的ORR电催化活性和稳定性。对于含Ti的催化剂,高活性归因于其固有活性的增强,而对4电子ORR的高选择性归因于以下事实:Ti的存在有助于这些纳米复合材料的氧结合能向更正值移动(减弱氧键)。与PtC TKK / GC和Pt-Pd / GNR / GC修饰电极的ORR响应相比,发现该氧化物在能量上有助于提高Ti / Pt-Pd / GNR / GC电极的ORR电催化活性和稳定性。对于含Ti的催化剂,高活性归因于其固有活性的增强,而对4电子ORR的高选择性归因于以下事实:Ti的存在有助于这些纳米复合材料的氧结合能向更正值移动(减弱氧键)。
更新日期:2020-03-16
down
wechat
bug