当前位置: X-MOL 学术J. Adv. Model. Earth Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Microbial Functional Group‐Based CH4 Model Integrated Into a Terrestrial Ecosystem Model: Model Structure, Site‐Level Evaluation, and Sensitivity Analysis
Journal of Advances in Modeling Earth Systems ( IF 4.4 ) Pub Date : 2020-04-01 , DOI: 10.1029/2019ms001867
Chaoqing Song 1, 2 , Junwei Luan 3 , Xiaofeng Xu 4 , Minna Ma 5, 6 , Mika Aurela 7 , Annalea Lohila 7 , Ivan Mammarella 8 , Pavel Alekseychik 8 , Eeva‐Stiina Tuittila 9 , Wei Gong 10 , Xiuzhi Chen 5, 6 , Xianhong Meng 11 , Wenping Yuan 5, 6
Affiliation  

Wetlands are one of the most important terrestrial ecosystems for land‐atmosphere CH4 exchange. A new process‐based, biophysical model to quantify CH4 emissions from natural wetlands was developed and integrated into a terrestrial ecosystem model (Integrated Biosphere Simulator). The new model represents a multisubstance system (CH4, O2, CO2, and H2) and describes CH4 production, oxidation, and three transport processes (diffusion, plant‐mediated transport, and ebullition). The new model uses several critical microbial mechanisms to represent the interaction of anaerobic fermenters and homoacetogens, hydrogenotrophic, and acetoclastic methanogens, and methanotrophs in CH4 production and oxidation. We applied the model to 24 different wetlands globally to compare the simulated CH4 emissions to observations and conducted a sensitivity analysis. The results indicated that (1) for most sites, the model was able to capture the magnitude and variation of observed CH4 emissions under varying environmental conditions; (2) the parameters that regulate dissolved organic carbon and acetate production, and acetoclastic methanogenesis had the significant impact on simulated CH4 emissions; (3) the representation of the process components of CH4 cycling showed that CH4 oxidation was about half or more of CH4 production, and plant‐mediated transport was the dominant pathway at most sites; and (4) the seasonality of simulated CH4 emissions can be controlled by soil temperature, water table position, or combinations thereof.

中文翻译:

基于微生物功能组的CH4模型集成到陆地生态系统模型中:模型结构,站点级评估和敏感性分析

湿地是陆地-大气层CH 4交换最重要的陆地生态系统之一。开发了一种新的基于过程的生物物理模型,用于量化自然湿地的CH 4排放,并将其集成到陆地生态系统模型(集成生物圈模拟器)中。新模型表示多物质系统(CH 4,O 2,CO 2和H 2)并描述CH 4生产,氧化和三个运输过程(扩散,植物介导的运输和沸腾)。新模型使用了几种关键的微生物机制来代表厌氧发酵罐与同型产乙酸菌,氢营养型和乙酰碎裂产甲烷菌以及甲烷营养菌在CH 4产生和氧化中的相互作用。我们将该模型应用于全球24个不同的湿地,以将模拟的CH 4排放与观测值进行比较,并进行了敏感性分析。结果表明(1)对于大多数站点,该模型都能捕获所观测到的CH 4的大小和变化。在变化的环境条件下的排放;(2)调节溶解性有机碳和乙酸盐生产的参数,以及碎裂甲烷化作用对模拟的CH 4排放有显着影响;(3)CH 4循环过程成分的表示表明,CH 4氧化大约占CH 4产生的一半或更多,而植物介导的运输是大多数场所的主要途径。(4)模拟CH 4排放的季节可以通过土壤温度,地下水位或它们的组合来控制。
更新日期:2020-04-01
down
wechat
bug