当前位置: X-MOL 学术J. Anal. At. Spectrom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of the multi-elemental self-absorption mechanism and experimental optimization in laser-induced breakdown spectroscopy
Journal of Analytical Atomic Spectrometry ( IF 3.1 ) Pub Date : 2020-03-13 , DOI: 10.1039/d0ja00048e
Song Cai 1, 2, 3, 4, 5 , Yun Tang 4, 6, 7, 8 , Fan Wang 4, 5, 9, 10, 11 , Yonggang Xiong 1, 2, 3, 4 , Xiao Sun 1, 2, 3, 4 , Xingzu Ming 1, 2, 3, 4
Affiliation  

The self-absorption effect reduces the accuracy of element measurements in laser-induced breakdown spectroscopy (LIBS) experiments. In this paper, the mechanism of the self-absorption effect was studied. First, we established a plasma concentration distribution model and plasma dynamics model of the plasma expansion in three directions during LIBS based on physical laws. By coupling a plasma concentration distribution model with a self-absorption model, the LIBS self-absorption effect value model was obtained. Second, the models were applied in a numerical simulation to determine plasma spatial distribution characteristics during LIBS. The self-absorption effect values of spectral lines were calculated. Finally, experiments were conducted with an optical spectrometer to obtain the Na, K, and Al atomic emission spectra. On the theoretical plane, the Boltzmann plot method and the Stark broadening method were used to obtain the plasma characteristic parameters. The spectral line intensities of the Na, K and Al atom lines were obtained without and with microwave-assisted LIBS experiments for comparison. The experimental analysis showed that during the LIBS process, microwave assistance can enhance the emission spectroscopy intensity and inhibit or reduce the LIBS self-absorption effect. The experimental samples were in good agreement with those of theoretical simulation, indicating the effectiveness and practicability of the created LIBS self-absorption effect value model, which can improve the optimization of the LIBS process.

中文翻译:

激光击穿光谱中多元素自吸收机理的研究及实验优化

自吸收效应降低了激光诱导击穿光谱(LIBS)实验中元素测量的准确性。本文研究了自吸收作用的机理。首先,基于物理定律,建立了LIBS在三个方向上血浆膨胀的血浆浓度分布模型和血浆动力学模型。通过将血浆浓度分布模型与自吸收模型耦合,获得LIBS自吸收效应值模型。其次,将模型应用于数值模拟,以确定LIBS期间的等离子体空间分布特征。计算谱线的自吸收效应值。最后,用光谱仪进行实验以获得Na,K和Al原子发射光谱。在理论上,用玻尔兹曼图法和斯塔克展宽法获得等离子体的特征参数。在不使用微波辅助LIBS实验的情况下和通过微波辅助LIBS实验获得的Na,K和Al原子线的谱线强度进行比较。实验分析表明,在LIBS过程中,微波辅助可以增强发射光谱强度,抑制或降低LIBS的自吸收作用。实验样品与理论模拟结果吻合良好,说明所建立的LIBS自吸收效应值模型的有效性和实用性,可以改善LIBS工艺的优化。在不进行微波辅助LIBS实验的情况下和通过微波辅助LIBS实验获得的K和Al原子谱线进行比较。实验分析表明,在LIBS过程中,微波辅助可以增强发射光谱强度,抑制或降低LIBS的自吸收作用。实验样品与理论模拟结果吻合良好,说明所建立的LIBS自吸收效应值模型的有效性和实用性,可以改善LIBS工艺的优化。在不进行微波辅助LIBS实验的情况下和通过微波辅助LIBS实验获得的K和Al原子谱线进行比较。实验分析表明,在LIBS过程中,微波辅助可以增强发射光谱强度,抑制或降低LIBS的自吸收作用。实验样品与理论模拟结果吻合良好,说明所建立的LIBS自吸收效应值模型的有效性和实用性,可以改善LIBS工艺的优化。
更新日期:2020-03-13
down
wechat
bug