当前位置: X-MOL 学术IEEE Trans. Ind. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flexible 3-D Helix Fabrication by In-Situ SEM Micromanipulation System
IEEE Transactions on Industrial Electronics ( IF 7.5 ) Pub Date : 8-14-2019 , DOI: 10.1109/tie.2019.2934079
Panbing Wang , Haojian Lu , Yajing Shen

The helical microstructure has been widely applied to various industries, including the mechanical manufacture, electronics, and biomedical engineering. Due to the miniature size of the helical microstructure, the low manufacture precision will highly degrade its working performance. Although current manufacture methods can realize its fabrication with relatively high accuracy, the used material is constrained to several specific conditions. To address the above problems, this article proposes a laconic and high-precision three-dimensional (3-D) manufacture method for the helical microstructure based on the microrobotic system without the limitation of materials. In this article, the microrobotic system with six degrees-of-freedom is developed for manufacture. Then, the image processing operation for providing feedback information is introduced. Third, the trajectory of each individual robotic module is designed according to the structure's certain size. After that, the control system with feedforward and double feedback is reported to realize the accurate manufacture. Finally, the experimental results demonstrate that the manufacture precision can reach up to 2 $\mu$m with the standard deviation (STD) of 1.06. This research will pave a new path for the high-precision 3-D manufacturing at small scale, and have long-term impacts on robot-aided manufacturing system with high potential for commercialization in the future.

中文翻译:


通过原位 SEM 显微操作系统制造灵活的 3D 螺旋



螺旋微结构已广泛应用于机械制造、电子、生物医学工程等各个行业。由于螺旋显微结构尺寸微小,制造精度低会严重降低其工作性能。虽然目前的制造方法可以实现相对较高的精度,但所使用的材料受到一些特定条件的限制。针对上述问题,本文提出了一种基于微型机器人系统的不受材料限制的简洁、高精度的螺旋微结构三维(3-D)制造方法。在本文中,开发了用于制造的六自由度微型机器人系统。然后,介绍用于提供反馈信息的图像处理操作。第三,根据结构的一定尺寸设计每个单独机器人模块的轨迹。在此基础上,提出了前馈和双反馈的控制系统,实现了精确制造。最后,实验结果表明,制造精度可达2 $\mu$m,标准偏差(STD)为1.06。该研究将为小规模高精度3D制造开辟一条新道路,并对未来具有高度商业化潜力的机器人辅助制造系统产生长期影响。
更新日期:2024-08-22
down
wechat
bug