当前位置: X-MOL 学术IEEE Internet Things J. › 论文详情
JointRec: A Deep-Learning-Based Joint Cloud Video Recommendation Framework for Mobile IoT
IEEE Internet of Things Journal ( IF 9.515 ) Pub Date : 2019-10-01 , DOI: 10.1109/jiot.2019.2944889
Sijing Duan; Deyu Zhang; Yanbo Wang; Lingxiang Li; Yaoxue Zhang

In the era of Internet of Things (IoT), watching videos on mobile devices has been a popular application in our daily life. How to recommend videos to users is one of the most concerned problem for Internet video service providers (IVSPs). In order to provide better recommendation service to users, they deploy cloud servers in a geo-distributed manner. Each server is responsible for analyzing a local area of user data. Therefore, these cloud servers form information islands and the characteristics of data present nonindependent and identically distribution (non-i.i.d). In this scenario, it is difficult to provide accurate video recommendation service to the minority of users in each area. To tackle this issue, we propose JointRec, a deep learning-based joint cloud video recommendation framework. JointRec integrates the JointCloud architecture into mobile IoT and achieves federated training among distributed cloud servers. Specifically, we first design a dual-convolutional probabilistic matrix factorization (Dual-CPMF) model to conduct video recommendation. Based on this model, each cloud can recommend videos by exploiting the user’s profiles and description of videos that users rate, thereby providing more accurate video recommendation services. Then, we present a federated recommendation algorithm which enables each cloud to share their weights and train a model cooperatively. Furthermore, considering the heavy communication costs in the process of federated training, we combine low-rank matrix factorization and 8-bit quantization method to reduce uplink communication costs and network bandwidth. We validate the proposed approach on the real-world data set, and the experimental results indicate the effectiveness of our proposed approach.
更新日期:2020-03-16

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug