当前位置: X-MOL 学术IEEE Internet Things J. › 论文详情
Random Energy Beamforming for Magnetic MIMO Wireless Power Transfer System
IEEE Internet of Things Journal ( IF 9.515 ) Pub Date : 2019-12-27 , DOI: 10.1109/jiot.2019.2962699
Yubin Zhao; Xiaofan Li; Yuefeng Ji; Cheng-Zhong Xu

Magnetic MIMO is a wireless power transfer (WPT) system that employs multiple magnetic resonance coils to provide high efficient wireless power in the near field. Magnetic energy beamforming is a typical scheme to control the currents or voltages of the transmitter coils in order to achieve some objectives. Thus, the magnetic channel information is essential to magnetic beamforming (MagBF), and it needs complicated circuits and communication protocols to feedback such information. Such information may be not available due to the circuit limits or privacy concerns. In addition, the performance will be degraded with imperfect channel estimation in the noisy and mobile dynamic environment. In this case, only some limited feedback information is available, e.g., received power. In this article, we propose a random MagBF method to achieve maximum received power efficiency and simplify the system architecture. This scheme employs iterative Monte Carlo sampling and resampling to search an optimal beamforming solution based on the received power feedbacks. We design an online training protocol to implement the proposed scheme. It is computationally light and requires only limited feedback information, which avoids complex channel estimation or AC measurements. The simulation and real experimental results indicate that our algorithm can effectively increase the received power and approach the optimal performance with a fast convergent rate.
更新日期:2020-03-16

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug