当前位置: X-MOL 学术IEEE Microw. Wirel. Compon. Lett. › 论文详情
Interferometric Microwave Radar With a Feedforward Neural Network for Vehicle Speed-Over-Ground Estimation
IEEE Microwave and Wireless Components Letters ( IF 2.374 ) Pub Date : 2020-02-04 , DOI: 10.1109/lmwc.2020.2966191
Eric Klinefelter; Jeffrey A. Nanzer

A novel approach to measuring the ground speed of autonomous vehicles using interferometric radar is presented. Using a microwave radar with interferometric processing and a feedforward neural network with local regression, high-accuracy velocity estimation is achieved with a downward-facing radar that, unlike forward-looking Doppler radars, can be protected from road debris and is, furthermore, unaffected by wheel slip and requires no external inputs, such as Global Navigation Satellite Systems (GNSS). A 16.9-GHz active interferometric array generates a grating lobe pattern and as the ground passes through the pattern, the range of frequencies over which the response is distributed increases proportionally with the ground velocity. We implement a feedforward neural network to estimate the velocity based on the interferometer’s frequency response. The estimator achieved a root-mean-squared error of 0.138 (m/s), equivalent to that of the forward-looking Doppler radars.
更新日期:2020-03-16

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug