当前位置: X-MOL 学术IEEE Photon. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stacked Encapsulation Structure for Discretely Distributed Quantum Dot Array
IEEE Photonics Journal ( IF 2.1 ) Pub Date : 2020-04-01 , DOI: 10.1109/jphot.2020.2977218
Jing Cai , Jianyao Lin , Yu Chen , Sheng Xu , Yun Ye , Enguo Chen , Tailiang Guo

The performances of quantum-dot (QD) based photoluminescent devices are highly restricted by the application environment, especially the moisture and oxygen. However, current external encapsulation structures are not applicable to the devices with discrete QD distribution, especially for some rough profiles. To address this issue, an encapsulation method for discretely distributed quantum-dot arrays (DQDA) is proposed for liquid crystal display (LCD) backlight applications, in which the DQDA can be well fabricated by printing the QD slurry onto a light guiding substrate (LGS), and then covered with a thin UV glue layer and a barrier film. By specially optimizing the UV glue and barrier film, this ultra-thin encapsulation structure cannot only improve the surface defects of the QD morphology without affecting the original light path and the output optical performance, but also significantly suppress the fluorescence decay and isolate moisture and oxygen by almost 100 times compared with unencapsulated one. The water vapor transmission rate (WVTR) was measured to be 1.29 × 10−4 g/m2/day after fabricated the stacked encapsulation structure. After a long period of aging test, the encapsulated sample kept its luminance for 1000 hours. This method also has potential to widely used for discrete structures in other device applications due to its easy fabrication process, high reliability, and low manufacturing costs.

中文翻译:

离散分布量子点阵列的堆叠封装结构

基于量子点(QD)的光致发光器件的性能受到应用环境的高度限制,尤其是水分和氧气。然而,目前的外部封装结构不适用于离散QD分布的器件,特别是对于一些粗糙的轮廓。为了解决这个问题,提出了一种用于液晶显示器 (LCD) 背光应用的离散分布式量子点阵列 (DQDA) 封装方法,其中通过将 QD 浆料印刷到导光基板 (LGS) 上可以很好地制造 DQDA。 ),然后覆盖一层薄薄的UV胶层和阻隔膜。通过特别优化UV胶和阻隔膜,这种超薄封装结构不仅可以在不影响原始光路和输出光学性能的情况下改善QD形貌的表面缺陷,而且与未封装的结构相比,还可以显着抑制荧光衰减并将水分和氧气隔离近100倍。在制造堆叠封装结构后,水蒸气透过率 (WVTR) 测量为 1.29 × 10-4 g/m2/天。经过长时间的老化测试,封装后的样品可以保持1000小时的亮度。由于其制造工艺简单、可靠性高和制造成本低,该方法还具有广泛用于其他器件应用中的分立结构的潜力。但与未封装的相比,还显着抑制了荧光衰减并将水分和氧气隔离了近 100 倍。在制造堆叠封装结构后,水蒸气透过率 (WVTR) 测量为 1.29 × 10-4 g/m2/天。经过长时间的老化测试,封装后的样品可以保持1000小时的亮度。由于其制造工艺简单、可靠性高和制造成本低,该方法还具有广泛用于其他器件应用中的分立结构的潜力。但与未封装的相比,还显着抑制了荧光衰减并将水分和氧气隔离了近 100 倍。在制造堆叠封装结构后,水蒸气透过率 (WVTR) 测量为 1.29 × 10-4 g/m2/天。经过长时间的老化测试,封装后的样品可以保持1000小时的亮度。由于其制造工艺简单、可靠性高和制造成本低,该方法还具有广泛用于其他器件应用中的分立结构的潜力。
更新日期:2020-04-01
down
wechat
bug