当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of Arrhenius activation energy in development of covalent bonding in axisymmetric flow of radiative-Cross nanofluid
International Communications in Heat and Mass Transfer ( IF 6.4 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.icheatmasstransfer.2020.104547
M. Azam , T. Xu , A. Shakoor , M. Khan

Abstract Numerical simulation and mathematical modeling are presented to propose the innovative concept of activation energy and binary chemical reaction aspects on unsteady axisymmetric flow of Cross nanofluid past a radially stretching surface. Non-linear thermal radiation is also taken into account. A revised model of nanoparticles is adopted to examine the impact of thermophoresis as well as Brownian diffusion on heat transfer mechanism. Boundary layer approximation is implemented to model the basic equations of nanoparticle concentration, thermal energy and momentum for Cross nanofluid in axisymmetric flow case. We have employed dimensionless quantities to alter the leading PDEs into nonlinear ODEs system. The numerical simulation is executed with the help of shooting Runge-Kutta Fehlberg approach. The heat transfer rate and resistance opposing to flow are measured with the guidance of Nusselt number and skin friction coefficient relations respectively. Fabulous results are achieved and also compared with existing work and noticed to be in excellent agreement. It is interesting to found that larger estimation of activation energy parameter resulted in the increment of nanoparticle concentration field. Additionally, nanoparticle concentration layer thickness is depreciated for higher values of temperature difference parameter and chemical reaction rate parameter. Furthermore, magnitude of surface drag force is diminished for appreciating values of Weissenberg number.

中文翻译:

阿伦尼乌斯活化能对辐射交叉纳米流体轴对称流动共价键形成的影响

摘要 数值模拟和数学建模提出了活化能和二元化学反应方面的创新概念,即交叉纳米流体通过径向拉伸表面的非定常轴对称流动。非线性热辐射也被考虑在内。采用改进的纳米粒子模型来检查热泳和布朗扩散对传热机制的影响。边界层近似用于模拟轴对称流动情况下交叉纳米流体的纳米粒子浓度、热能和动量的基本方程。我们采用无量纲量将领先的偏微分方程转化为非线性常微分方程系统。数值模拟是在射击 Runge-Kutta Fehlberg 方法的帮助下执行的。分别以努塞尔数和蒙皮摩擦系数关系为指导,测量传热速率和逆流阻力。取得了惊人的结果,并与现有工作进行了比较,并注意到非常一致。有趣的是发现活化能参数的较大估计导致纳米粒子浓度场的增加。此外,纳米颗粒浓缩层厚度因温差参数和化学反应速率参数的值较高而折旧。此外,随着魏森伯格数的增加,表面阻力的大小会减小。取得了惊人的结果,并与现有工作进行了比较,并注意到非常一致。有趣的是发现活化能参数的较大估计导致纳米粒子浓度场的增加。此外,纳米颗粒浓缩层厚度因温差参数和化学反应速率参数的值较高而折旧。此外,随着魏森伯格数的增加,表面阻力的大小会减小。取得了惊人的结果,并与现有工作进行了比较,并注意到非常一致。有趣的是发现活化能参数的较大估计导致纳米粒子浓度场的增加。此外,纳米粒子浓度层厚度因温差参数和化学反应速率参数值较高而折旧。此外,随着魏森伯格数的增加,表面阻力的大小会减小。温度差参数和化学反应速率参数的值越高,纳米颗粒浓缩层的厚度就越薄。此外,随着魏森伯格数的增加,表面阻力的大小会减小。温度差参数和化学反应速率参数的值越高,纳米颗粒浓缩层的厚度就越薄。此外,随着魏森伯格数的增加,表面阻力的大小会减小。
更新日期:2020-04-01
down
wechat
bug