当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery
Energy Storage Materials ( IF 20.4 ) Pub Date : 2020-03-14 , DOI: 10.1016/j.ensm.2020.03.011
Shigang Chen , Rong Lan , John Humphreys , Shanwen Tao

Aqueous rechargeable Zn/MnO2 batteries are attractive due to their low-cost, high safety and use of non-toxic materials. In term of electrolyte materials, it is anticipated that an aqueous electrolyte with a wider electrochemical window will improve the stability and energy density. In this work, we investigated salt-concentrated electrolytes based on relatively inexpensive acetate salts. An electrochemical window of 3.4 V was achieved in salt-concentrated 1 m Zn(OAc)2+31 m KOAc electrolyte. Its total ionic conductivity is 2.96 × 10-2 S cm-1 while the ionic conductivity of Zn2+ ions is 7.80 × 10-3 S cm-1, estimated by a current interrupt method. This electrolyte is regarded as a mild alkaline environment with a pH value of 9.76, causing the different storage mechanism for anode with Zn2+ ions and, cathode with OH- ions as the charge carriers respectively. A Zn-MnO2 battery was assembled using 1 m Zn(OAc)2+31 m KOAc electrolyte, self-supported α-MnO2-TiN/TiO2 cathode and Zn foil anode. The Zn/MnO2 battery can be charged to 2.0 V versus Zn/Zn2+ and delivers discharge capacity and energy density of 304.6 mAh·g-1 and 368.5 Wh·kg-1 in first cycle which is then reduced to 243.1 mAh·g-1 and 277.8 Wh·kg-1 after 600 cycles when charged/discharged under a current density of 100 mA g-1 (∼C/3). During cycling, the coulombic efficiency can be maintained around 99% and reached 99.9% during the 14-340th cycles. After the cycling tests, almost no dendrites were observed on the Zn foil anode attributing to the super-high salt concentration in that acetate-based electrolyte, which will benefit the stability of aqueous zinc batteries.



中文翻译:

用于高压Zn / MnO 2水性电池的盐浓缩乙酸盐电解质

水性可充电Zn / MnO 2电池因其低成本,高安全性和使用无毒材料而具有吸引力。就电解质材料而言,预期具有更宽的电化学窗口的水性电解质将改善稳定性和能量密度。在这项工作中,我们研究了基于相对便宜的醋酸盐的盐浓缩电解质。在盐浓度为1 m的Zn(OAc)2 +31 m KOAc电解质中,电化学窗口为3.4V 。总离子电导率为2.96×10 -2  S cm -1,而Zn 2+离子的电导率为7.80×10 -3  S cm -1由当前的中断方法估算。该电解液被认为是具有9.76的pH值的弱碱性环境,造成用于与锌阳极中的不同存储机制2+离子和被OH,阴极-分别离子作为电荷载体。甲锌的MnO 2电池使用1M的Zn(OAc)组装2 31米的KOAc电解质,自支撑的α-MnO的2 -锡/二氧化钛2阴极和Zn箔阳极。与Zn / Zn 2+相比,Zn / MnO 2电池可充电至2.0 V,并在第一循环中提供304.6 mAh·g -1和368.5 Wh·kg -1的放电容量和能量密度,然后降低至243.1 mAh· G在100 mA g -1(〜C / 3)的电流密度下充电/放电600个循环后的-1和277.8 Wh·kg -1。在循环过程中,在第14-340个循环中,库仑效率可保持在99%左右并达到99.9%。循环测试后,在锌箔阳极上几乎没有观察到树突,这归因于该醋酸盐基电解质中的超高盐浓度,这将有利于水性锌电池的稳定性。

更新日期:2020-03-16
down
wechat
bug