当前位置: X-MOL 学术Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Underwater angle-only tracking with propagation delay and time-offset between observers
Signal Processing ( IF 4.4 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.sigpro.2020.107581
Jun Su , Yaan Li , Wasiq Ali

Abstract Due to the existence of signal propagation delay, the time interval between two consecutive signal emission times from the same target is varying and unknown, it will not be equal to the sampling interval of the observer. This phenomenon occurs more apparently in acoustic sensor surveillance system and complicates angle-only target tracking problems. As a result, the current state of the target kinematic information is difficult to estimate. For the double observer systems, even if they are synchronized, there is a time-offset between the observers due to signal propagation delay. So each observer receives signals from the same target at different emission times. In this paper, we propose a new algorithm to deal with this time-offset by building a set of constraints for a centralized double observer system in a three-dimensional environment, and using the Gauss-Helmert model for the state transition of two adjacent consecutive states. Furthermore, we consider the varying underwater sound speed and apply a sound speed profile model. Also, a novel algorithm is developed for the underwater environment, and its convergence condition is mathematically derived. Simulation results clearly validate that our proposed algorithm has better estimation accuracy in the underwater environment with comparison to other existing methods.

中文翻译:

具有传播延迟和观察者之间时间偏移的仅水下角度跟踪

摘要 由于信号传播延迟的存在,来自同一目标的两个连续信号发射时间之间的时间间隔是变化的且未知的,它将不等于观察者的采样间隔。这种现象在声传感器监视系统中更明显,并且使仅角度目标跟踪问题复杂化。因此,难以估计目标运动学信息的当前状态。对于双观测器系统,即使它们是同步的,由于信号传播延迟,观测器之间也存在时间偏移。因此,每个观察者在不同的发射时间接收来自同一目标的信号。在本文中,我们提出了一种新算法来处理这种时间偏移,方法是在三维环境中为集中式双观察者系统构建一组约束,并使用 Gauss-Helmert 模型进行两个相邻连续状态的状态转换。此外,我们考虑了变化的水下声速并应用了声速剖面模型。此外,还针对水下环境开发了一种新算法,并从数学上推导出了其收敛条件。仿真结果清楚地证明,与其他现有方法相比,我们提出的算法在水下环境中具有更好的估计精度。针对水下环境开发了一种新算法,并从数学上推导出了其收敛条件。仿真结果清楚地证明,与其他现有方法相比,我们提出的算法在水下环境中具有更好的估计精度。针对水下环境开发了一种新算法,并从数学上推导出了其收敛条件。仿真结果清楚地证明,与其他现有方法相比,我们提出的算法在水下环境中具有更好的估计精度。
更新日期:2020-11-01
down
wechat
bug