当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Ensemble deep contractive auto-encoders for intelligent fault diagnosis of machines under noisy environment
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-03-14 , DOI: 10.1016/j.knosys.2020.105764
Yuyan Zhang; Xinyu Li; Liang Gao; Wen Chen; Peigen Li

Intelligent fault diagnosis methods based on deep auto-encoder have achieved great success in the past several years. However, these methods cannot effectively handle the data collected under noisy environment. Therefore, this paper proposes a new ensemble deep contractive auto-encoder (EDCAE) to address the problem. First, we design fifteen deep contractive auto-encoders (DCAE) to learn invariant feature representation automatically. Due to the Jacobian penalty term in DCAE and different characteristics, these models can deal with various noisy data effectively. Second, fisher discriminant analysis is applied to select low-dimensional features with the maximum class separability. Softmax classifier is adopted to identify the selected features and produce fifteen classification results. Finally, a new combination strategy is developed to combine these individual results. Benefitting from the combination strategy, it can produce accurate diagnosis results even under strong background noise. Additionally, to prove the effectiveness of EDCAE, theory analysis about error bound is conducted. The proposed method is verified on three case studies including bearing, gear box and self-priming centrifugal pump. Experiments are conducted under seven different signal-to-noise-ratios. Results show that EDCAE is better than other intelligent diagnosis methods, including individual DCAE, deep auto-encoder, sparse deep auto-encoder, deep denoising auto-encoder and several ensemble methods.
更新日期:2020-03-16

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug