当前位置: X-MOL 学术Chem. Eng. Process. Process Intensif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical approach to CO2 absorption in microreactors and reactor volume prediction
Chemical Engineering and Processing: Process Intensification ( IF 3.8 ) Pub Date : 2020-03-12 , DOI: 10.1016/j.cep.2020.107904
Kai Zhu , Chaoqun Yao , Yanyan Liu , Guangwen Chen

Parametric analysis is presented for CO2 absorption process using the Danckwerts mass transfer model, which enables an efficient target-oriented design of microreactors. Instead of trial-error evaluation over given reactors, this work provides a quantitative study on the effects of various parameters (i.e., flow rate, reaction rate, system pressure) on the reactor volume. It is found that increasing system pressure can significantly reduce the reactor volume, offsetting the disadvantage of microreactors with limited volume. This work also evaluates the end effect of lab-scale tests that results from the absorption in the connecting tube and the gas-liquid separator. With the theoretical approach, the end effect is shown to increase with the increase of the throughput, which is in accordance with experimental results. The amount of CO2 absorbed in the end volume can be as large as 23 %∼47 % of the total CO2 absorbed, indicating a rather serious end effect.



中文翻译:

微反应器中CO 2吸收的理论方法和反应器体积预测

提出了使用Danckwerts传质模型对CO 2吸收过程进行参数分析的方法,该模型可实现微反应器的高效目标导向设计。这项工作不是对给定反应堆进行试错评估,而是对各种参数(即:流量,反应速率,系统压力)。发现增加系统压力可以显着减小反应器体积,从而抵消了体积有限的微反应器的缺点。这项工作还评估了实验室规模测试的最终效果,该效果是由连接管和气液分离器中的吸收引起的。通过理论方法,最终结果显示出随着吞吐量的增加而增加,这与实验结果一致。最终体积中吸收的CO 2量可高达吸收的总CO 2的23%〜47%,这表明相当严重的最终效果。

更新日期:2020-03-12
down
wechat
bug