当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Origin of Disorder Tolerance in Piezoelectric Materials and Design of Polar Systems
Chemistry of Materials ( IF 7.2 ) Pub Date : 2020-03-12 , DOI: 10.1021/acs.chemmater.9b04614
Handong Ling 1 , Shyam S. Dwaraknath 2 , Kristin A. Persson 1
Affiliation  

Current high-performing piezoelectric materials are dominated by perovskites that rely on soft optical phonon modes stabilized by disorder near a morphotropic phase boundary and a unique resilience of the polar response to that disorder. To identify structural families with similar resilience, we develop a first-principles sensitivity analysis approach to determine the effect of disorder on the piezoelectric response for structures in the Materials Project database. In well-known piezoelectric systems, the lattice dynamics, rather than internal strain or dielectric, control the polar response. Additionally, multiple stable optical phonon modes are found to contribute to the piezoelectric response, providing a fingerprint for disorder tolerance. A multiple-phonon mode criterion is used to evaluate candidate materials for disorder-tolerant piezoelectric prototype systems. Five promising structures are altered through chemical substitution, generating potential MPB end points with large piezoelectric responses beyond perovskites including Akermanite Sr2xCa2 – 2xCoSi2O7, which exhibits a nearly 20% increase in response at the 50% composition.

中文翻译:

压电材料中无序公差的起源和极性系统的设计

当前的高性能压电材料主要由钙钛矿所主导,钙钛矿依赖于软光学声子模态,该声子模态通过在相变相边界附近的无序和对这种无序的极性响应的独特回弹力而稳定。为了确定具有类似弹性的结构族,我们开发了第一性原理敏感性分析方法来确定无序对材料项目数据库中结构压电响应的影响。在众所周知的压电系统中,晶格动力学而不是内部应变或介电常数控制极性响应。另外,发现多种稳定的光学声子模式有助于压电响应,为无序耐受提供了指纹。多声子模式准则用于评估耐无序压电原型系统的候选材料。通过化学取代改变了五个有前途的结构,产生了潜在的MPB端点,其压电响应超出钙钛矿,包括AkermaniteSr。2 x Ca 2 – 2 x CoSi 2 O 7,在50%的成分下,响应增加近20%。
更新日期:2020-04-23
down
wechat
bug