当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phosphorus‐Functionalized Fe2VO4/Nitrogen‐Doped Carbon Mesoporous Nanowires with Exceptional Lithium Storage Performance
ChemElectroChem ( IF 3.5 ) Pub Date : 2020-03-12 , DOI: 10.1002/celc.202000198
Yuanxue Tao 1 , Nan Yang 1 , Chennan Liang 1 , Dekang Huang 1 , Pei Wang 1 , Feifei Cao 1 , Yanzhu Luo 1 , Hao Chen 1
Affiliation  

The binary transition metal oxides have attracted great attention because of their considerable energy and power densities. However, they suffer from low reaction kinetics and large volume change, limiting their practical energy applications. The construction of a mesoporous structure with a large surface area, the development of a carbon matrix, as well as heteroatom doping can effectively overcome the above challenges. Herein, the synthesis of phosphorous‐containing Fe2VO4/nitrogen‐doped carbon mesoporous nanowires (P‐Fe2VO4/NCMNWs) is reported. In this unique structure, the atomic‐level P‐doping could increase the conductivity of Fe2VO4 by reducing its band gap, which is confirmed by DFT calculations. Furthermore, the phosphorus can covalently “bridge” the carbon layer and Fe2VO4 through P−C and Fe−O−P bondings. As a result, this anode material exhibits a high capacity (1002 mA h g−1 at 0.5 A g−1 after 250 cycles), excellent rate performance (448 mA h g−1 at 10 A g−1), and prominent long‐term cycling stability (533 mA h g−1 at 5 A g−1 after 500 cycles, 364 mA h g−1 at 10 A g−1 after 1000 cycles). All of these attractive features make the P‐Fe2VO4/NCMNWs a promising electrode material for high‐performance lithium‐ion batteries.

中文翻译:

具有出色的锂存储性能的磷官能化Fe2VO4 /氮掺杂碳介孔纳米线

二元过渡金属氧化物由于其相当大的能量和功率密度而引起了极大的关注。但是,它们的反应动力学低且体积变化大,从而限制了其实际的能源应用。具有大表面积的中孔结构的构造,碳基质的发展以及杂原子掺杂可以有效地克服上述挑战。本文报道了含磷的Fe 2 VO 4 /氮掺杂的碳介孔纳米线(P-Fe 2 VO 4 / NCMNWs)的合成。在这种独特的结构中,原子级的P掺杂可以提高Fe 2 VO 4的电导率。通过减小其带隙,这已通过DFT计算得到证实。此外,磷可以通过P-C和Fe-OP-P键共价“桥接”碳层和Fe 2 VO 4。其结果是,该负极材料表现出高的容量(1002毫安ħ克-1在0.5 A克-1 250次循环后),优良的倍率性能(448毫安ħ克-1以10 A G -1),和突出的长期循环稳定性(533毫安汞柱-1在5 A G -1 500次循环后,364毫安ħ克-1以10 A G -1 1000次循环后)。所有这些吸引人的功能使P‐Fe 2 VO 4/ NCMNW是一种有前途的高性能锂离子电池电极材料。
更新日期:2020-03-12
down
wechat
bug