当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Organic–Rare Earth Hybrid Anode with Superior Cyclability for Lithium Ion Battery
Advanced Materials Interfaces ( IF 5.4 ) Pub Date : 2020-03-12 , DOI: 10.1002/admi.201902168
Jianwei Wang 1 , Xiaolei Sun 2 , Lingling Xu 1 , Jiale Xia 1 , Yaodong Yang 1 , Zongyou Yin 3 , Feng Luo 4 , Yaping Du 2
Affiliation  

Organic compounds with electroactive sites are considered as a new generation of green electrode materials for lithium ion batteries. However, exploring effective approaches to design high‐capacity molecules and suppressing their solubilization remain big challenges. Herein, a functional anode architecture is first designed by using chemical bonds between organic compound and rare earth hollow structure, which enables active materials to be efficiently utilized, accelerates reaction kinetics, and mitigates undesired dissolution in electrolyte. Compared with pure organic sodium naphthyl‐based tetrathiocarboxylate (SNBT) compound and CeO2@Carbon, the hybrid electrode (CeO2@Carbon/SNBT) exhibits the best long‐term cyclability and its capacity retention has significantly increased. The current strategy would trigger more investigations into the development of organic materials for commercialized applications.

中文翻译:

锂离子电池具有出色循环能力的有机-稀土混合阳极

具有电活性位的有机化合物被认为是用于锂离子电池的新一代绿色电极材料。但是,探索设计高容量分子并抑制其溶解的有效方法仍然是巨大的挑战。在此,首先通过使用有机化合物和稀土空心结构之间的化学键设计功能性阳极结构,这使得活性材料能够被有效地利用,加速了反应动力学,并减轻了不希望的在电解质中的溶解。与纯有机萘基四硫代羧酸钠钠(SNBT)化合物和CeO 2 @Carbon混合电极(CeO 2@ Carbon / SNBT)表现出最佳的长期可循环性,并且其容量保持力显着提高。当前的策略将引发对用于商业化应用的有机材料开发的更多研究。
更新日期:2020-03-12
down
wechat
bug