当前位置: X-MOL 学术Soft Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetics of colloidal particle deposition in microfluidic systems under temperature gradients: experiment and modelling
Soft Matter ( IF 2.9 ) Pub Date : 2020-03-12 , DOI: 10.1039/c9sm02102g
Zhibin Yan 1, 2, 3, 4, 5 , Xiaoyang Huang 6, 7, 8 , Lingling Shui 1, 2, 3, 4, 5 , Chun Yang 6, 7, 8
Affiliation  

The deposition of colloidal particles can cause particulate fouling on solid walls and the formation of clogs during the transport of colloidal suspensions in microchannels. The particle deposition rate grows over time and blocks the microchannels eventually. The process of particle deposition is affected by various physicochemical parameters. In this paper, we investigate the effect of temperature gradient on the particle deposition of a pressure-driven suspension flow in a microchannel. We designed a microfluidic device which can allow direct observation of the real-time process of particle deposition with single-particle resolution along the direction of applied temperature gradient. The experimental results show that particle deposition rate is decreased by increasing the applied temperature gradients. Based on the framework of the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, we then derive a mass transport model to describe the particle deposition under different temperature gradients. The model shows that the observed reduction of particle deposition rate with temperature gradient is due to the collective effect of the temperature gradient and the bulk solution temperature in the two steps of the particle deposition process, including the particle transport and the particle attachment. Our work illustrates the critical effects of temperature gradients on the particle deposition in microchannels, and is expected to provide a better understanding of thermally driven particulate fouling and clogging in microfluidic devices.

中文翻译:

温度梯度下微流体系统中胶体颗粒沉积的动力学:实验和建模

胶体颗粒的沉积会导致在微通道中胶体悬浮液的运输过程中,固体壁上的颗粒结垢并形成堵塞物。颗粒沉积速率随时间增长,并最终阻塞微通道。颗粒沉积的过程受各种物理化学参数的影响。在本文中,我们研究了温度梯度对微通道中压力驱动悬浮液颗粒沉积的影响。我们设计了一种微流控设备,该设备可以沿应用的温度梯度方向以单粒子分辨率直接观察粒子沉积的实时过程。实验结果表明,通过增加施加的温度梯度可以降低颗粒沉积速率。基于Derjaguin–Landau–Verwey–Overbeek(DLVO)理论的框架,然后我们得出了一个传质模型来描述在不同温度梯度下的颗粒沉积。该模型表明,观察到的随温度梯度降低的颗粒沉积速率是由于在颗粒沉积过程的两个步骤(包括颗粒传输和颗粒附着)中温度梯度和本体溶液温度的集体效应。我们的工作说明了温度梯度对微通道中颗粒沉积的关键影响,并有望提供对热驱动颗粒结垢和微流控设备堵塞的更好理解。然后,我们得出一个传质模型来描述在不同温度梯度下的颗粒沉积。该模型表明,观察到的随温度梯度降低的颗粒沉积速率是由于在颗粒沉积过程的两个步骤(包括颗粒传输和颗粒附着)中温度梯度和本体溶液温度的共同作用。我们的工作说明了温度梯度对微通道中颗粒沉积的关键影响,并有望提供对热驱动颗粒结垢和微流控设备堵塞的更好理解。然后,我们得出一个传质模型来描述在不同温度梯度下的颗粒沉积。该模型表明,观察到的随温度梯度降低的颗粒沉积速率是由于在颗粒沉积过程的两个步骤(包括颗粒传输和颗粒附着)中温度梯度和本体溶液温度的集体效应。我们的工作说明了温度梯度对微通道中颗粒沉积的关键影响,并有望提供对热驱动颗粒结垢和微流控设备堵塞的更好理解。该模型表明,观察到的随温度梯度降低的颗粒沉积速率是由于在颗粒沉积过程的两个步骤(包括颗粒传输和颗粒附着)中温度梯度和本体溶液温度的集体效应。我们的工作说明了温度梯度对微通道中颗粒沉积的关键影响,并有望提供对热驱动颗粒结垢和微流控设备堵塞的更好理解。该模型表明,观察到的随温度梯度降低的颗粒沉积速率是由于在颗粒沉积过程的两个步骤(包括颗粒传输和颗粒附着)中温度梯度和本体溶液温度的集体效应。我们的工作说明了温度梯度对微通道中颗粒沉积的关键影响,并有望提供对热驱动颗粒结垢和微流控设备堵塞的更好理解。
更新日期:2020-04-24
down
wechat
bug