当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
A generalized Sylvester-Gallai type theorem for quadratic polynomials
arXiv - CS - Computational Complexity Pub Date : 2020-03-11 , DOI: arxiv-2003.05152
Shir Peleg; Amir Shpilka

In this work we prove a version of the Sylvester-Gallai theorem for quadratic polynomials that takes us one step closer to obtaining a deterministic polynomial time algorithm for testing zeroness of $\Sigma^{[3]}\Pi\Sigma\Pi^{[2]}$ circuits. Specifically, we prove that if a finite set of irreducible quadratic polynomials $\mathcal{Q}$ satisfy that for every two polynomials $Q_1,Q_2\in \mathcal{Q}$ there is a subset $\mathcal{K}\subset \mathcal{Q}$, such that $Q_1,Q_2 \notin \mathcal{K}$ and whenever $Q_1$ and $Q_2$ vanish then also $\prod_{i\in \mathcal{K}} Q_i$ vanishes, then the linear span of the polynomials in $\mathcal{Q}$ has dimension $O(1)$. This extends the earlier result [Shpilka19] that showed a similar conclusion when $|\mathcal{K}| = 1$. An important technical step in our proof is a theorem classifying all the possible cases in which a product of quadratic polynomials can vanish when two other quadratic polynomials vanish. I.e., when the product is in the radical of the ideal generates by the two quadratics. This step extends a result from [Shpilka19]that studied the case when one quadratic polynomial is in the radical of two other quadratics.
更新日期:2020-03-12

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug