当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photocatalysts for Hydrogen Evolution Coupled with Production of Value‐Added Chemicals
Small Methods ( IF 12.4 ) Pub Date : 2020-03-11 , DOI: 10.1002/smtd.202000063
Bingquan Xia 1 , Yanzhao Zhang 1 , Bingyang Shi 2 , Jingrun Ran 1 , Kenneth Davey 1 , Shi‐Zhang Qiao 1
Affiliation  

The conversion of water into clean hydrogen fuel using renewable solar energy can potentially be used to address global energy and environmental issues. However, conventional photocatalytic H2 evolution from water splitting has low efficiency and poor stability. Hole scavengers are therefore added to boost separation efficiency of photoexcited electron–hole pairs and improve stability by consuming the strongly oxidative photoexcited holes. The drawbacks of this approach are increased cost and production of waste. Recently, researchers have reported the use of abundantly available hole scavengers, including biomass, biomass‐derived intermediates, plastic wastes, and a range of alcohols for H2 evolution, coupled with value‐added chemicals production using semiconductor‐based photocatalysts. It is timely, therefore, to comprehensively summarize the properties, performances, and mechanisms of these photocatalysts, and critically review recent advances, challenges, and opportunities in this emerging area. Herein, this paper: 1) outlines reaction mechanisms of photocatalysts for H2 evolution coupled with selective oxidation, C–H activation and C–C coupling, together with nonselective oxidation, using hole‐scavengers; 2) introduces equations to compute conversion/selectivity of selective oxidation; 3) summarizes and critically compares recently reported photocatalysts with particular emphasis on correlation between physicochemical characteristics and performances, together with photocatalytic mechanisms, and; 4) appraises current advances and challenges.

中文翻译:

氢气释放的光催化剂与增值化学品的生产

利用可再生太阳能将水转化为清洁氢燃料可潜在地用于解决全球能源和环境问题。然而,常规的水分解产生的光催化H 2效率低且稳定性差。因此,添加了空穴清除剂以提高光激发电子-空穴对的分离效率,并通过消耗强氧化光激发空穴来提高稳定性。这种方法的缺点是成本增加和废物产生。最近,研究人员报告了使用大量可利用的空穴清除剂,包括生物质,生物质衍生的中间体,塑料废料和各种H 2的醇类。发展,再加上使用基于半导体的光催化剂的增值化学品生产。因此,适时全面总结这些光催化剂的性质,性能和机理,并认真审查该新兴领域的最新进展,挑战和机遇是及时的。本文在此:1)概述了光催化剂对H 2的反应机理使用空穴清除剂进行的演化与选择性氧化,CH活化和CC偶联以及非选择性氧化结合在一起;2)引入方程来计算选择性氧化的转化率/选择性;3)总结并严格比较最近报道的光催化剂,特别着重于理化特性和性能之间的相关性,以及光催化机理,以及 4)评估当前的进步和挑战。
更新日期:2020-03-11
down
wechat
bug