当前位置: X-MOL 学术J. Chemometr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
LiMM‐PCA: Combining ASCA + and linear mixed models to analyse high‐dimensional designed data
Journal of Chemometrics ( IF 1.9 ) Pub Date : 2020-03-10 , DOI: 10.1002/cem.3232
Manon Martin 1 , Bernadette Govaerts 1
Affiliation  

Nowadays, life science experiments—and especially “omics” fields—often imply a high volume of information from high throughput technologies that is gathered in the form of a wide and short multivariate response. These data are intrinsically correlated and generally produced by another multivariate set of factors or continuous variables, collected in what is defined as the design matrix. Such design factors usually involve the presence of a treatment, but other sources of biological or technical variability in the data are often measured as well. The ASCA framework, based on ANOVA and PCA, leads to promising results. By combining dimension reduction projection methods and classic statistical modelling, it enables to decipher the main sources of variability in the produced response and offers attractive graphical representations of the factors' effect. However, this approach has not yet been extended to more advanced designs involving random factors, being typically involved in longitudinal, hierarchical, or repeatability/reproducibility studies. This paper has its roots in the GLM version of ASCA, called ASCA+, that leads to unbiased estimators of the factors' effects for unbalanced data. It is here extended by replacing GLM by LMM and adapting the methodology. Taking into account the error structure of the data indeed leads to more accurate data modelling and more generalisable results. The suggested methodology is applied to two experimental case studies that highlight the benefits of this approach as it leads to a refined data analysis with interesting inferential properties, while keeping the powerful visualisation outputs produced by ASCA.

中文翻译:

LiMM-PCA:结合ASCA+和线性混合模型分析高维设计数据

如今,生命科学实验——尤其是“组学”领域——通常意味着来自高通量技术的大量信息,这些信息以广泛而短暂的多元响应的形式收集。这些数据本质上是相关的,通常由另一组多变量因素或连续变量产生,收集在定义为设计矩阵的内容中。此类设计因素通常涉及处理的存在,但数据中其他生物或技术可变性来源也经常被测量。基于 ANOVA 和 PCA 的 ASCA 框架产生了可喜的结果。通过结合降维投影方法和经典统计建模,它能够破译所产生响应中变异的主要来源,并提供有吸引力的因素图形表示 影响。然而,这种方法尚未扩展到涉及随机因素的更高级设计,通常涉及纵向、分层或重复性/再现性研究。这篇论文源于 ASCA 的 GLM 版本,称为 ASCA+,它导致对不平衡数据的因素影响的无偏估计。在这里通过用 LMM 替换 GLM 并调整方法来扩展它。考虑到数据的错误结构确实会导致更准确的数据建模和更具概括性的结果。建议的方法应用于两个实验案例研究,它们突出了这种方法的好处,因为它导致具有有趣推理属性的精细数据分析,同时保持 ASCA 产生的强大可视化输出。这种方法尚未扩展到涉及随机因素的更高级设计,通常涉及纵向、分层或可重复性/再现性研究。这篇论文源于 ASCA 的 GLM 版本,称为 ASCA+,它导致对不平衡数据的因素影响的无偏估计。在这里通过用 LMM 替换 GLM 并调整方法来扩展它。考虑到数据的错误结构确实会导致更准确的数据建模和更具概括性的结果。建议的方法应用于两个实验案例研究,它们突出了这种方法的好处,因为它导致具有有趣推理特性的精细数据分析,同时保持 ASCA 产生的强大可视化输出。这种方法尚未扩展到涉及随机因素的更高级设计,通常涉及纵向、分层或可重复性/再现性研究。这篇论文源于 ASCA 的 GLM 版本,称为 ASCA+,它导致对不平衡数据的因素影响的无偏估计。它在这里通过用 LMM 替换 GLM 并调整方法来扩展。考虑到数据的错误结构确实会导致更准确的数据建模和更具概括性的结果。建议的方法应用于两个实验案例研究,它们突出了这种方法的好处,因为它导致具有有趣推理特性的精细数据分析,同时保持 ASCA 产生的强大可视化输出。
更新日期:2020-03-10
down
wechat
bug