当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020/03/11 , DOI: 10.1039/d0ta01034k
Yingchu Chen 1, 2, 3, 4 , Jie Shi 1, 2, 3, 4, 5 , Xitao Li 1, 2, 3, 4 , Siqi Li 1, 2, 3, 4 , Xinding Lv 1, 2, 3, 4 , Xiangnan Sun 1, 2, 3, 4 , Yan-Zhen Zheng 2, 3, 4, 5 , Xia Tao 1, 2, 3, 4
Affiliation  

Planar perovskite solar cells (PSCs) have the potential to compete with mesoporous PSCs due to their comparable power conversion efficiency (PCE) and their preparation, which can be achieved via similar processes to those of flexible or tandem PSCs. However, the severe current–voltage hysteresis that occurs in PSCs is still a big issue, attributable to trap-induced charge recombination and ion migration. Herein, we develop a universal strategy combining interface (PMMA:C60) and grain boundary (PTABr) engineering to effectively eliminate the hysteresis of planar PSCs by finely tuning the electron transport layer/perovskite interface and perovskite film morphology (grain size and grain boundary). Microstructure and spectral characterization, density functional theory (DFT) calculations and photoelectric measurements reveal that this ingenious combination of the two engineering approaches effectively reduces the trap sites and enlarges the perovskite grain size, leading to negligible hysteresis and high performance PSCs based on various compositional perovskites including MAPbI3, Cs0.15FA0.85PbI3 and Cs0.15FA0.75MA0.1PbI3, with power conversion efficiencies (PCEs) of 18.99%, 19.82%, 21.41% and extra-low hysteresis indices of 0.011, 0.007, 0.005, respectively. This work demonstrates a universal strategy by which to fabricate high efficiency and negligible hysteresis PSCs regardless of perovskite composition.

中文翻译:

界面和晶界工程相结合的通用策略,可将磁滞和效率高(21.41%)的平面钙钛矿太阳能电池忽略不计

平面钙钛矿太阳能电池(PSC)具有与中孔PSC竞争的潜力,这是因为它们具有可比的功率转换效率(PCE)和制备能力,这可以通过与柔性或串联PSC相似的工艺来实现。然而,PSC中严重的电流-电压滞后仍然是一个大问题,这归因于陷阱引起的电荷复合和离子迁移。在此,我们开发了一种通用策略组合界面(PMMA:C 60)和晶界(PTABr)工程技术,可以通过微调电子传输层/钙钛矿界面和钙钛矿薄膜形态(晶粒尺寸和晶界)来有效消除平面PSC的滞后现象。微观结构和光谱表征,密度泛函理论(DFT)计算和光电测量表明,两种工程方法的巧妙结合有效地减少了陷阱位点并扩大了钙钛矿的晶粒尺寸,导致基于各种成分钙钛矿的磁滞和高性能PSC可以忽略不计包括MAPbI 3,Cs 0.15 FA 0.85 PbI 3和Cs 0.15 FA 0.75 MA 0.1 PbI如图3所示,功率转换效率(PCE)分别为18.99%,19.82%,21.41%和超低磁滞指数分别为0.011、0.007和0.005。这项工作演示了一种通用策略,无论钙钛矿成分如何,该策略均可制造出效率高且可忽略的磁滞PSC。
更新日期:2020-04-01
down
wechat
bug