当前位置: X-MOL 学术Food Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Continuous, rapid concentration of foodborne bacteria (Staphylococcus aureus, Salmonella typhimurium, and Listeria monocytogenes) using magnetophoresis-based microfluidic device
Food Control ( IF 5.6 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.foodcont.2020.107229
Taekeon Jung , Yugyung Jung , Jaehyeon Ahn , Sung Yang

Abstract Most biosensors use small amounts (a few tens of microliters) of a sample to detect bacteria. However, it is necessary to detect bacteria with at least a few milliliters of the sample to obtain statistically significant results. Therefore, the bacteria concentration process is critical for the rapid and accurate detection of bacteria. In addition, most bacteria concentration devices have a low throughput (200 μL/h–3.6 mL/h), and it takes several hours to process a few milliliters of a sample. To significantly improve the throughput, a magnetophoresis-based bacteria concentration device is developed using a commercial polyethylene tube. The device is fabricated in three dimensions by wrapping the tube around the magnet. The channel length of the proposed device can be easily adjusted by adopting different tube lengths. Thus, particles can be concentrated even under high flow rates. The optimum channel length is calculated using the particle velocity engendered by the magnet and experimentally evaluated under various channel lengths and flow rate conditions. Moreover, the performance of the proposed device is evaluated using two different food samples, milk and homogenized cabbage, into which bacteria are spiked. The separation efficiency and concentration factor are higher than 92% and 110 times, respectively, at a flow rate of 40 mL/h. These results confirm that the proposed device has a considerably high throughput in comparison with that presented in previous studies.

中文翻译:

使用基于磁泳的微流体装置连续快速浓缩食源性细菌(金黄色葡萄球菌、鼠伤寒沙门氏菌和单核细胞增生李斯特氏菌)

摘要 大多数生物传感器使用少量(几十微升)样品来检测细菌。但是,需要至少用几毫升的样品来检测细菌,才能获得具有统计学意义的结果。因此,细菌浓缩过程对于快速准确地检测细菌至关重要。此外,大多数细菌浓缩设备的处理量较低(200 μL/h–3.6 mL/h),处理几毫升样品需要几个小时。为了显着提高吞吐量,使用商业聚乙烯管开发了一种基于磁泳的细菌浓缩装置。通过将管缠绕在磁体上,该设备在三个维度上制造。通过采用不同的管长,可以很容易地调整所提出设备的通道长度。因此,即使在高流速下也可以浓缩颗粒。最佳通道长度是使用磁铁产生的粒子速度计算的,并在各种通道长度和流速条件下进行实验评估。此外,使用两种不同的食物样品(牛奶和均质卷心菜)评估了所提出设备的性能,其中掺入了细菌。在 40 mL/h 的流速下,分离效率和浓缩系数分别高于 92% 和 110 倍。这些结果证实,与先前研究中提出的设备相比,所提出的设备具有相当高的吞吐量。最佳通道长度是使用磁铁产生的粒子速度计算的,并在各种通道长度和流速条件下进行实验评估。此外,使用两种不同的食物样品(牛奶和均质卷心菜)评估了所提出设备的性能,其中掺入了细菌。在 40 mL/h 的流速下,分离效率和浓缩系数分别高于 92% 和 110 倍。这些结果证实,与先前研究中提出的设备相比,所提出的设备具有相当高的吞吐量。最佳通道长度是使用磁铁产生的粒子速度计算的,并在各种通道长度和流速条件下进行实验评估。此外,使用两种不同的食物样品(牛奶和均质卷心菜)评估了所提出设备的性能,其中掺入了细菌。在 40 mL/h 的流速下,分离效率和浓缩系数分别高于 92% 和 110 倍。这些结果证实,与先前研究中提出的设备相比,所提出的设备具有相当高的吞吐量。在 40 mL/h 的流速下,分离效率和浓缩系数分别高于 92% 和 110 倍。这些结果证实,与先前研究中提出的设备相比,所提出的设备具有相当高的吞吐量。在 40 mL/h 的流速下,分离效率和浓缩系数分别高于 92% 和 110 倍。这些结果证实,与先前研究中提出的设备相比,所提出的设备具有相当高的吞吐量。
更新日期:2020-08-01
down
wechat
bug