当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water
Water Research ( IF 12.8 ) Pub Date : 2020-03-11 , DOI: 10.1016/j.watres.2020.115699
Yujie Ben , Min Hu , Xingyue Zhang , Shimin Wu , Ming Hung Wong , Mingyu Wang , Charles B. Andrews , Chunmiao Zheng

Human exposure to antibiotic residues in drinking water has not been well evaluated. This study is the first attempt to simultaneously and efficiently identify and quantify 92 antibiotic residues in filtered tap water (multistage filtration at the tap) (n = 36) collected from 10 areas of a large city in southern China, 10 Chinese brands of bottled/barreled water (n = 30) and six foreign brands of bottled water (n = 18) obtained from the Chinese market. The average and median concentrations of all the detected antibiotic compounds was 182 and 92 ng/L in filtered tap water, 180 and 105 ng/L in Chinese brands of bottled/barreled water, and 666 and 146 ng/L in foreign brands of bottled water, respectively. A total of 41 antibiotics were detected in the filtered tap water, and 31 and 23 antibiotics were detected in the Chinese and foreign brands of bottled water, respectively. More types of antibiotics were detected in Chinese brands of bottled water than in the other bottled waters. In addition, Chinese waters had high roxithromycin concentrations, while the foreign brands of bottled water had high concentrations of dicloxacillin. The average and median values of the estimated overall daily intake of all the detected antibiotics were 4.3 and 2.3 ng/kg/day when only filtered tap water was drunk, 4.0 and 2.5 ng/kg/day when Chinese brands of bottled water was drunk, and 16.0 and 4.9 ng/kg/day when foreign brands of bottled water was drunk. Further study is needed to develop a more comprehensive estimation of human exposure to antibiotic residues in the environment and a more in-depth understanding of the potential hazard of ingested antibiotic residues to the human microbiome.

更新日期:2020-03-12
down
wechat
bug