当前位置: X-MOL 学术Environ. Model. Softw. › 论文详情
Computer vision-enhanced selection of geo-tagged photos on social network sites for land cover classification
Environmental Modelling & Software ( IF 4.552 ) Pub Date : 2020-03-12 , DOI: 10.1016/j.envsoft.2020.104696
Moataz Medhat ElQadi; Myroslava Lesiv; Adrian G. Dyer; Alan Dorin

Land cover maps are key elements for understanding global climate and land use. They are often created by automatically classifying satellite imagery. However, inconsistencies in classification may be introduced inadvertently. Experts can reconcile classification discrepancies by viewing satellite and high-resolution images taken on the ground. We present and evaluate a framework to filter relevant geo-tagged photos from social network sites for land cover classification tasks. Social network sites offer massive amounts of potentially relevant data, but its quality and fitness for research purposes must be verified. Our framework uses computer vision to analyse the content of geo-tagged photos on social network sites to generate descriptive tags. These are used to train artificial neural networks to predict a photo’s relevance for land cover classification. We apply our models to four African case studies and their neighbours. The framework has been implemented within Geo-Wiki to fetch relevant photos from Flickr.
更新日期:2020-03-12

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug