当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.enconman.2020.112679
Ramin Karami , Babak Kamkari

Abstract A key challenge in the deployment of practical latent heat energy storage systems employing phase change materials is the inherent low thermal conductivity of these materials. The present research is motivated by the need to intensify the buoyancy-driven convection flow in the phase change material to enhance the thermal performance of the system. In this paper, for the first time, the effect of applying perforated fins on the thermal performance enhancement of a vertical shell and tube latent heat energy storage heat exchanger is experimentally investigated and the results are compared with those of the unfinned and solid finned heat exchangers as the base cases. Lauric acid as the phase change material is placed in the shell side and the water is passed through the inner tube. The shells of the heat exchangers were made of transparent Plexiglas tubes to enable the visual comparison of the melting processes. The fins and tubes were made of copper. The melting process of phase change material is studied under different inlet water flow rates (0.5 and 1 l/min) and temperatures (55 and 65 °C). The experimental results showed that the time-averaged Nusselt number of the perforated finned heat exchanger is about 30% higher than that of the solid finned heat exchanger due to the minor hindering effect of the perforated fins on the development of the convection flows. Moreover, the total melting time of the perforated finned heat exchanger is about 7% lower than that of the solid finned heat exchanger.

中文翻译:

穿孔翅片对立式管壳潜热蓄热系统热性能提升影响的实验研究

摘要 使用相变材料的实际潜热储能系统的部署的一个关键挑战是这些材料固有的低导热性。本研究的动机是需要加强相变材料中的浮力驱动对流,以提高系统的热性能。本文首次通过实验研究了穿孔翅片对立式管壳潜热蓄热换热器热性能增强的影响,并将结果与​​无翅片和实心翅片换热器进行了比较。作为基本情况。月桂酸作为相变材料置于壳侧,水通过内管。热交换器的外壳由透明的有机玻璃管制成,以便对熔化过程进行视觉比较。翅片和管子由铜制成。研究了在不同进水流速(0.5 和 1 l/min)和温度(55 和 65 °C)下相变材料的熔化过程。实验结果表明,由于穿孔翅片对对流发展的阻碍作用较小,穿孔翅片换热器的时均努塞尔数比固体翅片换热器高约30%。而且,穿孔翅片式换热器的总熔化时间比固体翅片式换热器低约7%。研究了在不同进水流速(0.5 和 1 l/min)和温度(55 和 65 °C)下相变材料的熔化过程。实验结果表明,由于穿孔翅片对对流发展的阻碍作用较小,穿孔翅片换热器的时均努塞尔数比固体翅片换热器高约30%。而且,穿孔翅片式换热器的总熔化时间比固体翅片式换热器低约7%。研究了在不同进水流速(0.5 和 1 l/min)和温度(55 和 65 °C)下相变材料的熔化过程。实验结果表明,由于穿孔翅片对对流发展的阻碍作用较小,穿孔翅片换热器的时均努塞尔数比固体翅片换热器高约30%。而且,穿孔翅片式换热器的总熔化时间比固体翅片式换热器低约7%。实验结果表明,由于穿孔翅片对对流发展的阻碍作用较小,穿孔翅片换热器的时均努塞尔数比固体翅片换热器高约30%。而且,穿孔翅片式换热器的总熔化时间比固体翅片式换热器低约7%。实验结果表明,由于穿孔翅片对对流发展的阻碍作用较小,穿孔翅片换热器的时均努塞尔数比固体翅片换热器高约30%。而且,穿孔翅片式换热器的总熔化时间比固体翅片式换热器低约7%。
更新日期:2020-04-01
down
wechat
bug