当前位置: X-MOL 学术ACS Biomater. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Core–Shell Bioactive Ceramic Robocasting: Tuning Component Distribution Beneficial for Highly Efficient Alveolar Bone Regeneration and Repair
ACS Biomaterials Science & Engineering ( IF 5.8 ) Pub Date : 2020-03-10 , DOI: 10.1021/acsbiomaterials.0c00152
Lihong Lei 1 , Yingming Wei 1 , Zhongxiu Wang 1 , Jiayin Han 1 , Jianwei Sun 1 , Yi Chen 1 , Xianyan Yang 2 , Yanmin Wu 1 , Lili Chen 1 , Zhongru Gou 2
Affiliation  

Biodegradable ceramic (composite) scaffolds have inspired worldwide efforts in bone regenerative medicine. However, balancing the biodegradation with the bone’s natural healing time scale remains difficult; in particularl, there is a lack of strategy to control component distribution and bioactive ion release favorable for stimulating alveolar bone tissue ingrowth in situ within an expected time window. Here we aimed to develop the robocasting core–shell bioceramic scaffolds and investigate their physicochemical properties and osteostimulative capability in beagle alveolar bone defect model. The β-tircalcium phosphate (TCP) and 5% Mg-doped calcium silicate (CSi-Mg5) were used to fabricate the core–shell-typed TCP@TCP, CSi-Mg5@CSi-Mg5 and TCP@CSi-Mg5 porous scaffolds. Both in vitro and in vivo studies show that the CSi-Mg5 shell readily contributed to the initial mechanical strength and early-stage osteogenic activity of the TCP@CSi-Mg5 scaffolds, including tunable ion release, enhanced biodegradation, and outstanding osteogenesis capacity in comparison with the CSi-Mg5@CSi-Mg5 scaffolds and clinically available Bio-Oss granules in alveolar bone defects. Therefore, the presented core–shell robocasting of bioceramic technology and porous scaffold biomaterials enables an accurate preparation of highly bioactive and biodegradable scaffolds with a large freedom of design, and thereby may be beneficial for fabricating osteostimulation-tuned porous scaffolds for the challengeable alveolar bone defect reconstruction medicine.

中文翻译:

核-壳生物活性陶瓷机器人铸造:有利于高效牙槽骨再生和修复的调节成分分布

可生物降解的陶瓷(复合材料)支架激发了全世界骨再生医学的努力。然而,在生物降解与骨骼的自然愈合时间之间保持平衡仍然很困难。特别是,缺乏在预期的时间窗内控制有利于刺激牙槽骨组织向内生长的成分分布和生物活性离子释放的策略。在这里,我们旨在开发机器人铸造的核壳生物陶瓷支架,并研究它们在比格牙槽骨骨缺损模型中的理化特性和骨刺激能力。β-磷酸磷酸钙(TCP)和5%镁掺杂硅酸钙(CSi-Mg5)用于制造核壳型TCP @ TCP,CSi-Mg5 @ CSi-Mg5和TCP @ CSi-Mg5多孔支架。体外和体内研究均表明,与之相比,CSi-Mg5壳易于促进TCP @ CSi-Mg5支架的初始机械强度和早期成骨活性,包括可调节的离子释放,增强的生物降解和出色的成骨能力。使用CSi-Mg5 @ CSi-Mg5支架和临床可用的Bio-Oss颗粒治疗牙槽骨缺损。因此,提出的生物陶瓷技术和多孔支架生物材料的核-壳机器人铸造技术可以准确地制备具有高设计自由度的高生物活性和可生物降解的支架,从而可能有利于制造经骨刺激性调整的多孔支架,以应对棘手的牙槽骨缺损重建医学。
更新日期:2020-03-10
down
wechat
bug