当前位置: X-MOL 学术Cryst. Growth Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A New Software Framework for Implementing Crystal Growth Models to Materials of Any Crystallographic Complexity
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2020-03-11 , DOI: 10.1021/acs.cgd.9b01105
Yongsheng Zhao 1 , Carl J. Tilbury 1 , Steven Landis 2 , Yuanyuan Sun 1 , Jinjin Li 3 , Peng Zhu 1, 3 , Michael F. Doherty 1
Affiliation  

To continue the realization of new therapeutics, a more diverse range of solid forms is being considered. Synthetic modalities are broadening beyond simple organic molecules to more complicated structures, including organic salts, cocrystals, and solvates. As in all crystalline applications, engineering the morphology of such systems remains an important consideration, but traditional in silico approaches require further development to become capable of accurately describing these systems. A necessary, but not sufficient, condition to enact mechanistic crystal growth models is to calculate and organize solid-state interactions between growth units. The typical software framework for acquiring this information is to apply crystallographic symmetry operations to generate a unit cell from the asymmetric unit. While this approach is feasible for systems where the asymmetric unit corresponds to the growth unit itself, many systems do not satisfy this criterion, particularly the emerging therapeutic solid forms. By redesigning the input preparation software framework, we can build a description of the solid-state interactions that is independent of the asymmetric unit and applicable to any crystallographic complexity. We demonstrate the application of this method to three organic molecular crystals with crystallography of varying degrees of complexicty. The studied systems are naphthalene (Z′ = 0.5), benzoic acid (Z′ = 1), and tazofelone (Z′ = 2), respectively (where Z′ is the number of molecules in the asymmetric unit). This new software framework lays the groundwork for rapid in silico habit predictions of organic salts, cocrystals, and solvates.

中文翻译:

对任何晶体学复杂性的材料实施晶体生长模型的新软件框架

为了继续实现新的疗法,正在考虑范围更广的固体形式。合成形式正在从简单的有机分子扩展到更复杂的结构,包括有机盐,共晶体和溶剂化物。像在所有晶体应用中一样,对此类系统的形态进行工程设计仍然是一个重要的考虑因素,但是传统的计算机方法需要进一步开发才能变得能够准确描述这些系统。制定机械晶体生长模型的必要但不充分的条件是计算和组织生长单元之间的固态相互作用。获取此信息的典型软件框架是应用晶体对称操作从非对称单元生成晶胞。尽管这种方法对于不对称单元对应于生长单元本身的系统是可行的,但是许多系统不满足该标准,尤其是新兴的治疗性固体形式。通过重新设计输入准备软件框架,我们可以建立独立于非对称单元并适用于任何晶体学复杂性的固态相互作用的描述。我们展示了这种方法对三种有机分子晶体具有不同复杂程度的晶体学的应用。研究的系统是萘(我们可以建立独立于不对称单元并适用于任何晶体学复杂性的固态相互作用的描述。我们展示了这种方法对三种有机分子晶体具有不同复杂程度的晶体学的应用。研究的系统是萘(我们可以建立独立于不对称单元并适用于任何晶体学复杂性的固态相互作用的描述。我们通过复杂程度不同的晶体学证明了该方法对三种有机分子晶体的应用。研究的系统是萘(Z '= 0.5),苯甲酸(Z '= 1)和他唑非隆(Z '= 2)(其中Z '是不对称单元中的分子数)。这个新的软件框架为快速预测有机盐,共晶体和溶剂化物的计算机习惯奠定了基础。
更新日期:2020-03-11
down
wechat
bug