当前位置: X-MOL 学术J. Biomed. Mater. Res. Part B Appl. Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-pot porogen free method fabricated porous microsphere-aggregated 3D PCL scaffolds for bone tissue engineering.
Journal of Biomedical Materials Research Part B: Applied Biomaterials ( IF 3.2 ) Pub Date : 2020-03-10 , DOI: 10.1002/jbm.b.34601
Qingqing Yao 1, 2, 3 , Yu Liu 1, 2 , Yining Pan 1, 2 , Jacob M Miszuk 3 , Hongli Sun 3
Affiliation  

Three‐dimensional (3D) scaffolds with interconnected, hierarchically structured pores, and biomimetic nanostructures are desirable for tissue engineering, where preparation with a facile and biocompatible strategy remains challenging. In the present work, an innovative porous microspheres‐aggregated 3D PCL scaffold with macropores, micropores, and nanofibrous‐like structures was fabricated through a one‐pot thermally induced phase separation (TIPS) method without the use of any porogen or specific instruments. Importantly, the porosity, pore size, and mechanical properties of our scaffolds were tailorable through tuning of the polymer concentration. Interestingly, the bioactivity of our 3D PCL scaffolds was significantly improved, as abundant apatite‐like layers were formed on the 3D porous scaffolds, while no obvious apatite was observed on the 2D flat PCL film. Moreover, the high surface area attributed to the hierarchical macro/micro/nanostructure enabled our 3D porous scaffold to serve as a drug delivery depot for sustained release of both small molecule drug (phenamil) and protein (BMP2). In addition to sustained drug release, the hierarchical structure and high mechanical properties also contribute to significantly improving BMP2‐induced osteogenic differentiation. In summary, we developed a novel PCL porous scaffold through a facile, one‐pot TIPS method and demonstrated its promising potential application in large bone defect repair.

中文翻译:

一锅无致孔剂方法制造了用于骨组织工程的多孔微球聚集 3D PCL 支架。

具有互连的、分层结构的孔和仿生纳米结构的三维 (3D) 支架对于组织工程来说是可取的,在组织工程中,使用简便且生物相容的策略制备仍然具有挑战性。在目前的工作中,通过单锅热致相分离 (TIPS) 方法制造了一种创新的多孔微球聚集 3D PCL 支架,该支架具有大孔、微孔和纳米纤维状结构,无需使用任何致孔剂或特定仪器。重要的是,我们支架的孔隙率、孔径和机械性能可以通过调节聚合物浓度来定制。有趣的是,我们的 3D PCL 支架的生物活性显着提高,因为在 3D 多孔支架上形成了丰富的磷灰石样层,而在二维平面 PCL 薄膜上没有观察到明显的磷灰石。此外,归因于分层宏/微/纳米结构的高表面积使我们的 3D 多孔支架能够作为小分子药物(phenamil)和蛋白质(BMP2)持续释放的药物递送库。除了持续的药物释放外,分级结构和高机械性能也有助于显着改善 BMP2 诱导的成骨分化。总之,我们通过简便的单锅 TIPS 方法开发了一种新型 PCL 多孔支架,并证明了其在大型骨缺损修复中的潜在应用。归因于分层宏/微/纳米结构的高表面积使我们的 3D 多孔支架能够作为药物递送库,用于小分子药物(苯那美)和蛋白质(BMP2)的持续释放。除了持续的药物释放外,分级结构和高机械性能也有助于显着改善 BMP2 诱导的成骨分化。总之,我们通过简便的单锅 TIPS 方法开发了一种新型 PCL 多孔支架,并证明了其在大型骨缺损修复中的潜在应用。归因于分层宏/微/纳米结构的高表面积使我们的 3D 多孔支架能够作为药物递送库,用于小分子药物(苯那美)和蛋白质(BMP2)的持续释放。除了持续的药物释放外,分级结构和高机械性能也有助于显着改善 BMP2 诱导的成骨分化。总之,我们通过简便的单锅 TIPS 方法开发了一种新型 PCL 多孔支架,并证明了其在大型骨缺损修复中的潜在应用。
更新日期:2020-03-10
down
wechat
bug