当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low-frequency flexural wave based microparticle manipulation.
Lab on a Chip ( IF 6.1 ) Pub Date : 2020-03-10 , DOI: 10.1039/d0lc00072h
Hunter Bachman 1 , Yuyang Gu , Joseph Rufo , Shujie Yang , Zhenhua Tian , Po-Hsun Huang , Lingyu Yu , Tony Jun Huang
Affiliation  

Manipulation of microparticles and bio-samples is a critical task in many research and clinical settings. Recently, acoustic based methods have garnered significant attention due to their relatively simple designs, and biocompatible and precise manipulation of small objects. Herein, we introduce a flexural wave based acoustofluidic manipulation platform that utilizes low-frequency (4–6 kHz) commercial buzzers to achieve dynamic particle concentration and translation in an open fluid well. The device has two primary modes of functionality, wherein particles can be concentrated in pressure nodes that are present on the bottom surface of the device, or particles can be trapped and manipulated in streaming vortices within the fluid domain; both of these functions result from flexural mode vibrations that travel from the transducers throughout the device. Throughout our research, we numerically and experimentally explored the wave patterns generated within the device, investigated the particle concentration phenomenon, and utilized a phase difference between the two transducers to achieve precision movement of fluid vortices and the entrapped particle clusters. With its simple, low-cost nature and open fluidic chamber design, this platform can be useful in many biological, biochemical, and biomedical applications, such as tumor spheroid generation and culture, as well as the manipulation of embryos.

中文翻译:

基于低频弯曲波的微粒操纵。

微粒和生物样本的操作是许多研究和临床环境中的一项关键任务。最近,基于声学的方法由于其相对简单的设计以及对小物体的生物相容性和精确操纵而引起了极大的关注。在此,我们介绍了一种基于弯曲波的声流控平台,该平台利用低频(4-6 kHz)商用蜂鸣器在开放式流体井中实现动态颗粒浓度和平移。该设备具有两种主要的功能模式,其中颗粒可以集中在设备底部表面上存在的压力节点中,或者颗粒可以在流体域内的流动涡流中被捕获和操纵;这两种功能都是由从传感器传播到整个设备的弯曲模式振动产生的。在我们的研究过程中,我们通过数值和实验方式探索了设备内产生的波型,研究了颗粒集中现象,并利用两个传感器之间的相位差来实现流体涡流和捕获的颗粒簇的精确运动。凭借其简单、低成本和开放式流体室设计,该平台可用于许多生物、生化和生物医学应用,例如肿瘤球体的生成和培养,以及胚胎的操作。
更新日期:2020-04-24
down
wechat
bug