当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Credibility score based multi-criteria recommender system
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-03-10 , DOI: 10.1016/j.knosys.2020.105756
Shweta Gupta; Vibhor Kant

Recommender system has been emerged as a personalization tool to solve the issue of information overload in an e-commerce environment. Traditional collaborative filtering (CF) based recommender systems (RSs) suggest items to users based on their overall ratings which are used to find out similar users. Multi-criteria ratings are used to capture user preferences efficiently in multi-criteria recommender systems (MCRS), and incorporation of various criteria ratings can lead to higher performance in MCRS. Usually, user relies on the credibility of an item provided through his/her social circle or similar users, which is called a personal view on items from their close ones. However, it is not generally sufficient to depend exclusively on the personal view of the user. Therefore, public view that includes whole community can play a key role in the credibility of an item. In this paper, we propose a MCRS based on the credibility score of an item, which is an aggregated value of credibility scores on various criteria of an item. These credibility scores are computed based on personal and public views. However, different users have different priorities to various criteria of an item. Therefore, we use genetic algorithm to learn appropriate weights in the aggregation task of credibility score. The experiment results on Yahoo! Movies and modified MovieLens dataset demonstrate the effectiveness of proposed credibility score based MCRS in terms of coverage, recall, precision, and f-measure.
更新日期:2020-03-10

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug